Spaces:
Sleeping
Sleeping
Update asr.py
Browse files
asr.py
CHANGED
@@ -1,136 +1,49 @@
|
|
1 |
-
import librosa
|
2 |
-
from transformers import Wav2Vec2ForCTC, AutoProcessor
|
3 |
-
import torch
|
4 |
-
import numpy as np
|
5 |
-
from pathlib import Path
|
6 |
-
|
7 |
-
from huggingface_hub import hf_hub_download
|
8 |
-
from torchaudio.models.decoder import ctc_decoder
|
9 |
-
|
10 |
-
ASR_SAMPLING_RATE = 16_000
|
11 |
-
|
12 |
-
ASR_LANGUAGES = {}
|
13 |
-
with open(f"data/asr/all_langs.tsv") as f:
|
14 |
-
for line in f:
|
15 |
-
iso, name = line.split(" ", 1)
|
16 |
-
ASR_LANGUAGES[iso.strip()] = name.strip()
|
17 |
-
|
18 |
-
MODEL_ID = "facebook/mms-1b-all"
|
19 |
-
|
20 |
-
processor = AutoProcessor.from_pretrained(MODEL_ID)
|
21 |
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
|
|
22 |
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
# lm_decoding_configfile = hf_hub_download(
|
26 |
-
# repo_id="facebook/mms-cclms",
|
27 |
-
# filename="decoding_config.json",
|
28 |
-
# subfolder="mms-1b-all",
|
29 |
-
# )
|
30 |
-
|
31 |
-
# with open(lm_decoding_configfile) as f:
|
32 |
-
# lm_decoding_config = json.loads(f.read())
|
33 |
-
|
34 |
-
# # allow language model decoding for "eng"
|
35 |
-
|
36 |
-
# decoding_config = lm_decoding_config["eng"]
|
37 |
-
|
38 |
-
# lm_file = hf_hub_download(
|
39 |
-
# repo_id="facebook/mms-cclms",
|
40 |
-
# filename=decoding_config["lmfile"].rsplit("/", 1)[1],
|
41 |
-
# subfolder=decoding_config["lmfile"].rsplit("/", 1)[0],
|
42 |
-
# )
|
43 |
-
# token_file = hf_hub_download(
|
44 |
-
# repo_id="facebook/mms-cclms",
|
45 |
-
# filename=decoding_config["tokensfile"].rsplit("/", 1)[1],
|
46 |
-
# subfolder=decoding_config["tokensfile"].rsplit("/", 1)[0],
|
47 |
-
# )
|
48 |
-
# lexicon_file = None
|
49 |
-
# if decoding_config["lexiconfile"] is not None:
|
50 |
-
# lexicon_file = hf_hub_download(
|
51 |
-
# repo_id="facebook/mms-cclms",
|
52 |
-
# filename=decoding_config["lexiconfile"].rsplit("/", 1)[1],
|
53 |
-
# subfolder=decoding_config["lexiconfile"].rsplit("/", 1)[0],
|
54 |
-
# )
|
55 |
-
|
56 |
-
# beam_search_decoder = ctc_decoder(
|
57 |
-
# lexicon=lexicon_file,
|
58 |
-
# tokens=token_file,
|
59 |
-
# lm=lm_file,
|
60 |
-
# nbest=1,
|
61 |
-
# beam_size=500,
|
62 |
-
# beam_size_token=50,
|
63 |
-
# lm_weight=float(decoding_config["lmweight"]),
|
64 |
-
# word_score=float(decoding_config["wordscore"]),
|
65 |
-
# sil_score=float(decoding_config["silweight"]),
|
66 |
-
# blank_token="<s>",
|
67 |
-
# )
|
68 |
-
|
69 |
-
|
70 |
-
def transcribe(auto_data=None, lang="eng (English)"):
|
71 |
-
|
72 |
if not audio_data:
|
73 |
return "<<ERROR: Empty Audio Input>>"
|
74 |
|
|
|
75 |
if isinstance(audio_data, tuple):
|
76 |
-
# microphone
|
77 |
sr, audio_samples = audio_data
|
78 |
audio_samples = (audio_samples / 32768.0).astype(np.float32)
|
79 |
if sr != ASR_SAMPLING_RATE:
|
80 |
-
audio_samples = librosa.resample(
|
81 |
-
|
82 |
-
|
83 |
else:
|
84 |
-
# file upload
|
85 |
-
|
86 |
if not isinstance(audio_data, str):
|
87 |
-
return "<<ERROR: Invalid Audio Input
|
88 |
audio_samples = librosa.load(audio_data, sr=ASR_SAMPLING_RATE, mono=True)[0]
|
89 |
|
90 |
-
|
91 |
-
processor.tokenizer.set_target_lang(lang_code)
|
92 |
-
model.load_adapter(lang_code)
|
93 |
-
|
94 |
-
inputs = processor(
|
95 |
-
audio_samples, sampling_rate=ASR_SAMPLING_RATE, return_tensors="pt"
|
96 |
-
)
|
97 |
-
|
98 |
-
# set device
|
99 |
-
if torch.cuda.is_available():
|
100 |
-
device = torch.device("cuda")
|
101 |
-
elif (
|
102 |
-
hasattr(torch.backends, "mps")
|
103 |
-
and torch.backends.mps.is_available()
|
104 |
-
and torch.backends.mps.is_built()
|
105 |
-
):
|
106 |
-
device = torch.device("mps")
|
107 |
-
else:
|
108 |
-
device = torch.device("cpu")
|
109 |
-
|
110 |
-
model.to(device)
|
111 |
-
inputs = inputs.to(device)
|
112 |
|
|
|
113 |
with torch.no_grad():
|
114 |
outputs = model(**inputs).logits
|
115 |
-
|
116 |
-
if lang_code != "eng" or True:
|
117 |
ids = torch.argmax(outputs, dim=-1)[0]
|
118 |
-
|
119 |
-
else:
|
120 |
-
assert False
|
121 |
-
# beam_search_result = beam_search_decoder(outputs.to("cpu"))
|
122 |
-
# transcription = " ".join(beam_search_result[0][0].words).strip()
|
123 |
|
124 |
-
|
|
|
|
|
125 |
|
|
|
|
|
|
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
Checkout the instructions [here](https://huggingface.co/facebook/mms-1b-all) on how to run LM decoding for better accuracy.
|
136 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
2 |
+
model.eval()
|
3 |
|
4 |
+
def detect_language(text):
|
5 |
+
"""Detects language using langid (fast & lightweight)."""
|
6 |
+
lang, _ = langid.classify(text)
|
7 |
+
return lang if lang in ["en", "sw"] else "en" # Default to English
|
8 |
|
9 |
+
def transcribe_auto(audio_data=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
if not audio_data:
|
11 |
return "<<ERROR: Empty Audio Input>>"
|
12 |
|
13 |
+
# Process Microphone Input
|
14 |
if isinstance(audio_data, tuple):
|
|
|
15 |
sr, audio_samples = audio_data
|
16 |
audio_samples = (audio_samples / 32768.0).astype(np.float32)
|
17 |
if sr != ASR_SAMPLING_RATE:
|
18 |
+
audio_samples = librosa.resample(audio_samples, orig_sr=sr, target_sr=ASR_SAMPLING_RATE)
|
19 |
+
|
20 |
+
# Process File Upload Input
|
21 |
else:
|
|
|
|
|
22 |
if not isinstance(audio_data, str):
|
23 |
+
return "<<ERROR: Invalid Audio Input>>"
|
24 |
audio_samples = librosa.load(audio_data, sr=ASR_SAMPLING_RATE, mono=True)[0]
|
25 |
|
26 |
+
inputs = processor(audio_samples, sampling_rate=ASR_SAMPLING_RATE, return_tensors="pt")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
# **Step 1: Transcribe without Language Detection**
|
29 |
with torch.no_grad():
|
30 |
outputs = model(**inputs).logits
|
|
|
|
|
31 |
ids = torch.argmax(outputs, dim=-1)[0]
|
32 |
+
raw_transcription = processor.decode(ids)
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
# **Step 2: Detect Language from Transcription**
|
35 |
+
detected_lang = detect_language(raw_transcription)
|
36 |
+
lang_code = "eng" if detected_lang == "en" else "swh"
|
37 |
|
38 |
+
# **Step 3: Reload Model with Correct Adapter**
|
39 |
+
processor.tokenizer.set_target_lang(lang_code)
|
40 |
+
model.load_adapter(lang_code)
|
41 |
|
42 |
+
# **Step 4: Transcribe Again with Correct Adapter**
|
43 |
+
with torch.no_grad():
|
44 |
+
outputs = model(**inputs).logits
|
45 |
+
ids = torch.argmax(outputs, dim=-1)[0]
|
46 |
+
final_transcription = processor.decode(ids)
|
47 |
|
48 |
+
return f"Detected Language: {detect
|
49 |
+
ed_lang.upper()}\n\nTranscription:\n{final_transcription}"
|
|
|
|