Futuresony commited on
Commit
526b9d4
·
verified ·
1 Parent(s): 4ea9ccd

Upload vits_train.py

Browse files
Files changed (1) hide show
  1. vits/vits_train.py +290 -0
vits/vits_train.py ADDED
@@ -0,0 +1,290 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import argparse
4
+ import itertools
5
+ import math
6
+ import torch
7
+ from torch import nn, optim
8
+ from torch.nn import functional as F
9
+ from torch.utils.data import DataLoader
10
+ from torch.utils.tensorboard import SummaryWriter
11
+ import torch.multiprocessing as mp
12
+ import torch.distributed as dist
13
+ from torch.nn.parallel import DistributedDataParallel as DDP
14
+ from torch.cuda.amp import autocast, GradScaler
15
+
16
+ import commons
17
+ import utils
18
+ from data_utils import (
19
+ TextAudioLoader,
20
+ TextAudioCollate,
21
+ DistributedBucketSampler
22
+ )
23
+ from models import (
24
+ SynthesizerTrn,
25
+ MultiPeriodDiscriminator,
26
+ )
27
+ from losses import (
28
+ generator_loss,
29
+ discriminator_loss,
30
+ feature_loss,
31
+ kl_loss
32
+ )
33
+ from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
34
+ from text.symbols import symbols
35
+
36
+
37
+ torch.backends.cudnn.benchmark = True
38
+ global_step = 0
39
+
40
+
41
+ def main():
42
+ """Assume Single Node Multi GPUs Training Only"""
43
+ assert torch.cuda.is_available(), "CPU training is not allowed."
44
+
45
+ n_gpus = torch.cuda.device_count()
46
+ os.environ['MASTER_ADDR'] = 'localhost'
47
+ os.environ['MASTER_PORT'] = '80000'
48
+
49
+ hps = utils.get_hparams()
50
+ mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
51
+
52
+
53
+ def run(rank, n_gpus, hps):
54
+ global global_step
55
+ if rank == 0:
56
+ logger = utils.get_logger(hps.model_dir)
57
+ logger.info(hps)
58
+ utils.check_git_hash(hps.model_dir)
59
+ writer = SummaryWriter(log_dir=hps.model_dir)
60
+ writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
61
+
62
+ dist.init_process_group(backend='nccl', init_method='env://', world_size=n_gpus, rank=rank)
63
+ torch.manual_seed(hps.train.seed)
64
+ torch.cuda.set_device(rank)
65
+
66
+ train_dataset = TextAudioLoader(hps.data.training_files, hps.data)
67
+ train_sampler = DistributedBucketSampler(
68
+ train_dataset,
69
+ hps.train.batch_size,
70
+ [32,300,400,500,600,700,800,900,1000],
71
+ num_replicas=n_gpus,
72
+ rank=rank,
73
+ shuffle=True)
74
+ collate_fn = TextAudioCollate()
75
+ train_loader = DataLoader(train_dataset, num_workers=8, shuffle=False, pin_memory=True,
76
+ collate_fn=collate_fn, batch_sampler=train_sampler)
77
+ if rank == 0:
78
+ eval_dataset = TextAudioLoader(hps.data.validation_files, hps.data)
79
+ eval_loader = DataLoader(eval_dataset, num_workers=8, shuffle=False,
80
+ batch_size=hps.train.batch_size, pin_memory=True,
81
+ drop_last=False, collate_fn=collate_fn)
82
+
83
+ net_g = SynthesizerTrn(
84
+ len(symbols),
85
+ hps.data.filter_length // 2 + 1,
86
+ hps.train.segment_size // hps.data.hop_length,
87
+ **hps.model).cuda(rank)
88
+ net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
89
+ optim_g = torch.optim.AdamW(
90
+ net_g.parameters(),
91
+ hps.train.learning_rate,
92
+ betas=hps.train.betas,
93
+ eps=hps.train.eps)
94
+ optim_d = torch.optim.AdamW(
95
+ net_d.parameters(),
96
+ hps.train.learning_rate,
97
+ betas=hps.train.betas,
98
+ eps=hps.train.eps)
99
+ net_g = DDP(net_g, device_ids=[rank])
100
+ net_d = DDP(net_d, device_ids=[rank])
101
+
102
+ try:
103
+ _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g)
104
+ _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, optim_d)
105
+ global_step = (epoch_str - 1) * len(train_loader)
106
+ except:
107
+ epoch_str = 1
108
+ global_step = 0
109
+
110
+ scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
111
+ scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
112
+
113
+ scaler = GradScaler(enabled=hps.train.fp16_run)
114
+
115
+ for epoch in range(epoch_str, hps.train.epochs + 1):
116
+ if rank==0:
117
+ train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, eval_loader], logger, [writer, writer_eval])
118
+ else:
119
+ train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, None], None, None)
120
+ scheduler_g.step()
121
+ scheduler_d.step()
122
+
123
+
124
+ def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
125
+ net_g, net_d = nets
126
+ optim_g, optim_d = optims
127
+ scheduler_g, scheduler_d = schedulers
128
+ train_loader, eval_loader = loaders
129
+ if writers is not None:
130
+ writer, writer_eval = writers
131
+
132
+ train_loader.batch_sampler.set_epoch(epoch)
133
+ global global_step
134
+
135
+ net_g.train()
136
+ net_d.train()
137
+ for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths) in enumerate(train_loader):
138
+ x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(rank, non_blocking=True)
139
+ spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True)
140
+ y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True)
141
+
142
+ with autocast(enabled=hps.train.fp16_run):
143
+ y_hat, l_length, attn, ids_slice, x_mask, z_mask,\
144
+ (z, z_p, m_p, logs_p, m_q, logs_q) = net_g(x, x_lengths, spec, spec_lengths)
145
+
146
+ mel = spec_to_mel_torch(
147
+ spec,
148
+ hps.data.filter_length,
149
+ hps.data.n_mel_channels,
150
+ hps.data.sampling_rate,
151
+ hps.data.mel_fmin,
152
+ hps.data.mel_fmax)
153
+ y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
154
+ y_hat_mel = mel_spectrogram_torch(
155
+ y_hat.squeeze(1),
156
+ hps.data.filter_length,
157
+ hps.data.n_mel_channels,
158
+ hps.data.sampling_rate,
159
+ hps.data.hop_length,
160
+ hps.data.win_length,
161
+ hps.data.mel_fmin,
162
+ hps.data.mel_fmax
163
+ )
164
+
165
+ y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
166
+
167
+ # Discriminator
168
+ y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
169
+ with autocast(enabled=False):
170
+ loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
171
+ loss_disc_all = loss_disc
172
+ optim_d.zero_grad()
173
+ scaler.scale(loss_disc_all).backward()
174
+ scaler.unscale_(optim_d)
175
+ grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
176
+ scaler.step(optim_d)
177
+
178
+ with autocast(enabled=hps.train.fp16_run):
179
+ # Generator
180
+ y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
181
+ with autocast(enabled=False):
182
+ loss_dur = torch.sum(l_length.float())
183
+ loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
184
+ loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
185
+
186
+ loss_fm = feature_loss(fmap_r, fmap_g)
187
+ loss_gen, losses_gen = generator_loss(y_d_hat_g)
188
+ loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
189
+ optim_g.zero_grad()
190
+ scaler.scale(loss_gen_all).backward()
191
+ scaler.unscale_(optim_g)
192
+ grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
193
+ scaler.step(optim_g)
194
+ scaler.update()
195
+
196
+ if rank==0:
197
+ if global_step % hps.train.log_interval == 0:
198
+ lr = optim_g.param_groups[0]['lr']
199
+ losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl]
200
+ logger.info('Train Epoch: {} [{:.0f}%]'.format(
201
+ epoch,
202
+ 100. * batch_idx / len(train_loader)))
203
+ logger.info([x.item() for x in losses] + [global_step, lr])
204
+
205
+ scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr, "grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
206
+ scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/dur": loss_dur, "loss/g/kl": loss_kl})
207
+
208
+ scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
209
+ scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
210
+ scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
211
+ image_dict = {
212
+ "slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
213
+ "slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
214
+ "all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
215
+ "all/attn": utils.plot_alignment_to_numpy(attn[0,0].data.cpu().numpy())
216
+ }
217
+ utils.summarize(
218
+ writer=writer,
219
+ global_step=global_step,
220
+ images=image_dict,
221
+ scalars=scalar_dict)
222
+
223
+ if global_step % hps.train.eval_interval == 0:
224
+ evaluate(hps, net_g, eval_loader, writer_eval)
225
+ utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
226
+ utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "D_{}.pth".format(global_step)))
227
+ global_step += 1
228
+
229
+ if rank == 0:
230
+ logger.info('====> Epoch: {}'.format(epoch))
231
+
232
+
233
+ def evaluate(hps, generator, eval_loader, writer_eval):
234
+ generator.eval()
235
+ with torch.no_grad():
236
+ for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths) in enumerate(eval_loader):
237
+ x, x_lengths = x.cuda(0), x_lengths.cuda(0)
238
+ spec, spec_lengths = spec.cuda(0), spec_lengths.cuda(0)
239
+ y, y_lengths = y.cuda(0), y_lengths.cuda(0)
240
+
241
+ # remove else
242
+ x = x[:1]
243
+ x_lengths = x_lengths[:1]
244
+ spec = spec[:1]
245
+ spec_lengths = spec_lengths[:1]
246
+ y = y[:1]
247
+ y_lengths = y_lengths[:1]
248
+ break
249
+ y_hat, attn, mask, *_ = generator.module.infer(x, x_lengths, max_len=1000)
250
+ y_hat_lengths = mask.sum([1,2]).long() * hps.data.hop_length
251
+
252
+ mel = spec_to_mel_torch(
253
+ spec,
254
+ hps.data.filter_length,
255
+ hps.data.n_mel_channels,
256
+ hps.data.sampling_rate,
257
+ hps.data.mel_fmin,
258
+ hps.data.mel_fmax)
259
+ y_hat_mel = mel_spectrogram_torch(
260
+ y_hat.squeeze(1).float(),
261
+ hps.data.filter_length,
262
+ hps.data.n_mel_channels,
263
+ hps.data.sampling_rate,
264
+ hps.data.hop_length,
265
+ hps.data.win_length,
266
+ hps.data.mel_fmin,
267
+ hps.data.mel_fmax
268
+ )
269
+ image_dict = {
270
+ "gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy())
271
+ }
272
+ audio_dict = {
273
+ "gen/audio": y_hat[0,:,:y_hat_lengths[0]]
274
+ }
275
+ if global_step == 0:
276
+ image_dict.update({"gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())})
277
+ audio_dict.update({"gt/audio": y[0,:,:y_lengths[0]]})
278
+
279
+ utils.summarize(
280
+ writer=writer_eval,
281
+ global_step=global_step,
282
+ images=image_dict,
283
+ audios=audio_dict,
284
+ audio_sampling_rate=hps.data.sampling_rate
285
+ )
286
+ generator.train()
287
+
288
+
289
+ if __name__ == "__main__":
290
+ main()