Spaces:
Sleeping
Sleeping
Update asr.py
Browse files
asr.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import librosa
|
2 |
import torch
|
3 |
import numpy as np
|
|
|
4 |
from transformers import Wav2Vec2ForCTC, AutoProcessor
|
5 |
|
6 |
ASR_SAMPLING_RATE = 16_000
|
@@ -11,6 +12,11 @@ processor = AutoProcessor.from_pretrained(MODEL_ID)
|
|
11 |
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
12 |
model.eval()
|
13 |
|
|
|
|
|
|
|
|
|
|
|
14 |
def transcribe_auto(audio_data=None):
|
15 |
if not audio_data:
|
16 |
return "<<ERROR: Empty Audio Input>>"
|
@@ -30,20 +36,24 @@ def transcribe_auto(audio_data=None):
|
|
30 |
|
31 |
inputs = processor(audio_samples, sampling_rate=ASR_SAMPLING_RATE, return_tensors="pt")
|
32 |
|
33 |
-
# **Step 1:
|
34 |
with torch.no_grad():
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
# **Step
|
39 |
-
processor.tokenizer.set_target_lang(
|
40 |
-
model.load_adapter(
|
41 |
|
42 |
-
# **Step
|
43 |
with torch.no_grad():
|
44 |
outputs = model(**inputs).logits
|
45 |
ids = torch.argmax(outputs, dim=-1)[0]
|
46 |
-
|
47 |
|
48 |
-
return f"Detected Language: {detected_lang}\n\nTranscription:\n{
|
49 |
-
|
|
|
1 |
import librosa
|
2 |
import torch
|
3 |
import numpy as np
|
4 |
+
import langid # Language detection library
|
5 |
from transformers import Wav2Vec2ForCTC, AutoProcessor
|
6 |
|
7 |
ASR_SAMPLING_RATE = 16_000
|
|
|
12 |
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
13 |
model.eval()
|
14 |
|
15 |
+
def detect_language(text):
|
16 |
+
"""Detects language using langid (fast & lightweight)."""
|
17 |
+
lang, _ = langid.classify(text)
|
18 |
+
return lang if lang in ["en", "sw"] else "en" # Default to English
|
19 |
+
|
20 |
def transcribe_auto(audio_data=None):
|
21 |
if not audio_data:
|
22 |
return "<<ERROR: Empty Audio Input>>"
|
|
|
36 |
|
37 |
inputs = processor(audio_samples, sampling_rate=ASR_SAMPLING_RATE, return_tensors="pt")
|
38 |
|
39 |
+
# **Step 1: Transcribe without Language Detection**
|
40 |
with torch.no_grad():
|
41 |
+
outputs = model(**inputs).logits
|
42 |
+
ids = torch.argmax(outputs, dim=-1)[0]
|
43 |
+
raw_transcription = processor.decode(ids)
|
44 |
+
|
45 |
+
# **Step 2: Detect Language from Transcription**
|
46 |
+
detected_lang = detect_language(raw_transcription)
|
47 |
+
lang_code = "eng" if detected_lang == "en" else "swh"
|
48 |
|
49 |
+
# **Step 3: Reload Model with Correct Adapter**
|
50 |
+
processor.tokenizer.set_target_lang(lang_code)
|
51 |
+
model.load_adapter(lang_code)
|
52 |
|
53 |
+
# **Step 4: Transcribe Again with Correct Adapter**
|
54 |
with torch.no_grad():
|
55 |
outputs = model(**inputs).logits
|
56 |
ids = torch.argmax(outputs, dim=-1)[0]
|
57 |
+
final_transcription = processor.decode(ids)
|
58 |
|
59 |
+
return f"Detected Language: {detected_lang.upper()}\n\nTranscription:\n{final_transcription}"
|
|