Futuresony commited on
Commit
d44c023
·
verified ·
1 Parent(s): 07c5b0a

Delete asr.py(auto/audio)

Browse files
Files changed (1) hide show
  1. asr.py(auto/audio) +0 -59
asr.py(auto/audio) DELETED
@@ -1,59 +0,0 @@
1
- import librosa
2
- import torch
3
- import numpy as np
4
- import langid # Language detection library
5
- from transformers import Wav2Vec2ForCTC, AutoProcessor
6
-
7
- ASR_SAMPLING_RATE = 16_000
8
- MODEL_ID = "facebook/mms-1b-all"
9
-
10
- # Load MMS Model
11
- processor = AutoProcessor.from_pretrained(MODEL_ID)
12
- model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
13
- model.eval()
14
-
15
- def detect_language(text):
16
- """Detects language using langid (fast & lightweight)."""
17
- lang, _ = langid.classify(text)
18
- return lang if lang in ["en", "sw"] else "en" # Default to English
19
-
20
- def transcribe_audio(audio_data=None):
21
- if not audio_data:
22
- return "<<ERROR: Empty Audio Input>>"
23
-
24
- # Process Microphone Input
25
- if isinstance(audio_data, tuple):
26
- sr, audio_samples = audio_data
27
- audio_samples = (audio_samples / 32768.0).astype(np.float32)
28
- if sr != ASR_SAMPLING_RATE:
29
- audio_samples = librosa.resample(audio_samples, orig_sr=sr, target_sr=ASR_SAMPLING_RATE)
30
-
31
- # Process File Upload Input
32
- else:
33
- if not isinstance(audio_data, str):
34
- return "<<ERROR: Invalid Audio Input>>"
35
- audio_samples = librosa.load(audio_data, sr=ASR_SAMPLING_RATE, mono=True)[0]
36
-
37
- inputs = processor(audio_samples, sampling_rate=ASR_SAMPLING_RATE, return_tensors="pt")
38
-
39
- # **Step 1: Transcribe without Language Detection**
40
- with torch.no_grad():
41
- outputs = model(**inputs).logits
42
- ids = torch.argmax(outputs, dim=-1)[0]
43
- raw_transcription = processor.decode(ids)
44
-
45
- # **Step 2: Detect Language from Transcription**
46
- detected_lang = detect_language(raw_transcription)
47
- lang_code = "eng" if detected_lang == "en" else "swh"
48
-
49
- # **Step 3: Reload Model with Correct Adapter**
50
- processor.tokenizer.set_target_lang(lang_code)
51
- model.load_adapter(lang_code)
52
-
53
- # **Step 4: Transcribe Again with Correct Adapter**
54
- with torch.no_grad():
55
- outputs = model(**inputs).logits
56
- ids = torch.argmax(outputs, dim=-1)[0]
57
- final_transcription = processor.decode(ids)
58
-
59
- return f"Detected Language: {detected_lang.upper()}\n\nTranscription:\n{final_transcription}"