import librosa import torch import numpy as np from transformers import Wav2Vec2ForCTC, AutoProcessor ASR_SAMPLING_RATE = 16_000 MODEL_ID = "facebook/mms-1b-all" # Load MMS Model processor = AutoProcessor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) model.eval() def transcribe_auto(audio_data=None): if not audio_data: return "<>" # Process Microphone Input if isinstance(audio_data, tuple): sr, audio_samples = audio_data audio_samples = (audio_samples / 32768.0).astype(np.float32) if sr != ASR_SAMPLING_RATE: audio_samples = librosa.resample(audio_samples, orig_sr=sr, target_sr=ASR_SAMPLING_RATE) # Process File Upload Input else: if not isinstance(audio_data, str): return "<>" audio_samples = librosa.load(audio_data, sr=ASR_SAMPLING_RATE, mono=True)[0] inputs = processor(audio_samples, sampling_rate=ASR_SAMPLING_RATE, return_tensors="pt") # **Step 1: Detect Language** with torch.no_grad(): lang_id = model.generate(**inputs, task="lang-id") detected_lang = processor.tokenizer.batch_decode(lang_id, skip_special_tokens=True)[0] # **Step 2: Load Detected Language Adapter** processor.tokenizer.set_target_lang(detected_lang) model.load_adapter(detected_lang) # **Step 3: Transcribe Audio** with torch.no_grad(): outputs = model(**inputs).logits ids = torch.argmax(outputs, dim=-1)[0] transcription = processor.decode(ids) return f"Detected Language: {detected_lang}\n\nTranscription:\n{transcription}"