Spaces:
Runtime error
Runtime error
| import sys, types, importlib.machinery | |
| spec = importlib.machinery.ModuleSpec('flash_attn', loader=None) | |
| mod = types.ModuleType('flash_attn') | |
| mod.__spec__ = spec | |
| sys.modules['flash_attn'] = mod | |
| import transformers.utils.import_utils as _import_utils | |
| from transformers.utils import is_flash_attn_2_available | |
| _import_utils._is_package_available = lambda pkg: False | |
| _import_utils.is_flash_attn_2_available = lambda: False | |
| transformers.utils.is_flash_attn_2_available = getattr(transformers.utils, "is_flash_attn_2_available", lambda: False) | |
| transformers.utils.is_flash_attn_greater_or_equal_2_10 = lambda *args, **kwargs: False | |
| import huggingface_hub as _hf_hub | |
| _hf_hub.cached_download = _hf_hub.hf_hub_download | |
| import gradio as gr | |
| import torch | |
| import random | |
| from PIL import Image | |
| from transformers import AutoProcessor, AutoModelForCausalLM | |
| from diffusers import DiffusionPipeline | |
| try: | |
| from diffusers import FlowMatchEulerDiscreteScheduler | |
| except ImportError: | |
| from diffusers import EulerDiscreteScheduler as FlowMatchEulerDiscreteScheduler | |
| REVISION = "ceaf371f01ef66192264811b390bccad475a4f02" | |
| # Florence-2 λ‘λ | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', revision = REVISION, trust_remote_code=True, torch_dtype=torch.float16) | |
| florence_model.to("cpu") | |
| florence_model.eval() | |
| florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', revision = REVISION, trust_remote_code=True) | |
| # Stable Diffusion TurboX λ‘λ | |
| model_repo = "tensorart/stable-diffusion-3.5-large-TurboX" | |
| pipe = DiffusionPipeline.from_pretrained( | |
| model_repo, | |
| torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32 | |
| ) | |
| pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(model_repo, subfolder="scheduler", shift=5) | |
| pipe = pipe.to(device) | |
| MAX_SEED = 2**31 - 1 | |
| def pseudo_translate_to_korean_style(en_prompt: str) -> str: | |
| # λ²μ μμ΄ μ€νμΌ μ μ© | |
| return f"Cartoon styled {en_prompt} handsome or pretty people" | |
| def generate_prompt(image): | |
| """μ΄λ―Έμ§ β μμ΄ μ€λͺ β νκ΅μ΄ ν둬ννΈ μ€νμΌλ‘ λ³ν""" | |
| if not isinstance(image, Image.Image): | |
| image = Image.fromarray(image) | |
| inputs = florence_processor(text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt").to(device) | |
| generated_ids = florence_model.generate( | |
| input_ids=inputs["input_ids"], | |
| pixel_values=inputs["pixel_values"], | |
| max_new_tokens=512, | |
| num_beams=3 | |
| ) | |
| generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0] | |
| parsed_answer = florence_processor.post_process_generation( | |
| generated_text, | |
| task="<MORE_DETAILED_CAPTION>", | |
| image_size=(image.width, image.height) | |
| ) | |
| prompt_en = parsed_answer["<MORE_DETAILED_CAPTION>"] | |
| # λ²μκΈ° μμ΄ μ€νμΌ μ μ© | |
| cartoon_prompt = pseudo_translate_to_korean_style(prompt_en) | |
| return cartoon_prompt | |
| def generate_image(prompt, seed=42, randomize_seed=False): | |
| """ν μ€νΈ ν둬ννΈ β μ΄λ―Έμ§ μμ±""" | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator().manual_seed(seed) | |
| image = pipe( | |
| prompt=prompt, | |
| negative_prompt="μ곑λ μ, νλ¦Ό, μ΄μν μΌκ΅΄", | |
| guidance_scale=1.5, | |
| num_inference_steps=8, | |
| width=768, | |
| height=768, | |
| generator=generator | |
| ).images[0] | |
| return image, seed | |
| # Gradio UI κ΅¬μ± | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# πΌ μ΄λ―Έμ§ β μ€λͺ μμ± β μΉ΄ν° μ΄λ―Έμ§ μλ μμ±κΈ°") | |
| gr.Markdown("**π μ¬μ©λ² μλ΄ (νκ΅μ΄)**\n" | |
| "- μΌμͺ½μ μ΄λ―Έμ§λ₯Ό μ λ‘λνμΈμ.\n" | |
| "- AIκ° μμ΄ μ€λͺ μ λ§λ€κ³ , λ΄λΆμμ νκ΅μ΄ μ€νμΌ ν둬ννΈλ‘ μ¬κ΅¬μ±ν©λλ€.\n" | |
| "- μ€λ₯Έμͺ½μ κ²°κ³Ό μ΄λ―Έμ§κ° μμ±λ©λλ€.") | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_img = gr.Image(label="π¨ μλ³Έ μ΄λ―Έμ§ μ λ‘λ") | |
| run_button = gr.Button("β¨ μμ± μμ") | |
| with gr.Column(): | |
| prompt_out = gr.Textbox(label="π μ€νμΌ μ μ©λ ν둬ννΈ", lines=3, show_copy_button=True) | |
| output_img = gr.Image(label="π μμ±λ μ΄λ―Έμ§") | |
| def full_process(img): | |
| prompt = generate_prompt(img) | |
| image, seed = generate_image(prompt, randomize_seed=True) | |
| return prompt, image | |
| run_button.click(fn=full_process, inputs=[input_img], outputs=[prompt_out, output_img]) | |
| demo.launch() | |