Image-to-Text / app.py
Futuretop's picture
Update app.py
c4d1d8a verified
raw
history blame
1.82 kB
import gradio as gr
import subprocess
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForSeq2SeqLM
subprocess.run(
'pip install flash-attn --no-build-isolation',
env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"},
shell=True
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = 'microsoft/Florence-2-base-ft'
florence_model = AutoModelForSeq2SeqLM.from_pretrained(
model,
trust_remote_code=True).to(device).eval()
florence_processor = AutoProcessor.from_pretrained(model, trust_remote_code=True)
def generate_caption(image):
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
inputs = florence_processor(text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}
generated_ids = florence_model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
early_stopping=False,
do_sample=False,
num_beams=3,
)
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = florence_processor.post_process_generation(
generated_text,
task="<MORE_DETAILED_CAPTION>",
image_size=(image.width, image.height)
)
prompt = parsed_answer["<MORE_DETAILED_CAPTION>"]
print("\n\nGeneration completed!:"+ prompt)
return prompt
demo = gr.Interface(generate_caption,
inputs=[gr.Image(label="Input Image")],
outputs = [gr.Textbox(label="Output Prompt", lines=3, show_copy_button = True),
],
theme="Yntec/HaleyCH_Theme_Orange",
)
demo.launch(debug=True)