Futuretop commited on
Commit
39d15a3
ยท
verified ยท
1 Parent(s): ec41339

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +51 -196
app.py CHANGED
@@ -1,201 +1,56 @@
1
  import gradio as gr
2
- import numpy as np
3
- import random
4
-
5
- import spaces
6
- from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler
7
  import torch
 
 
8
 
 
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "tensorart/stable-diffusion-3.5-large-TurboX"
11
-
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
-
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
-
19
- pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(model_repo_id, subfolder="scheduler", shift=5)
20
-
21
- pipe = pipe.to(device)
22
-
23
- MAX_SEED = np.iinfo(np.int32).max
24
- MAX_IMAGE_SIZE = 1024
25
-
26
- @spaces.GPU(duration=65)
27
- def infer(
28
- prompt,
29
- negative_prompt="",
30
- seed=42,
31
- randomize_seed=False,
32
- width=1024,
33
- height=1024,
34
- guidance_scale=1.5,
35
- num_inference_steps=8,
36
- progress=gr.Progress(track_tqdm=True),
37
- ):
38
- if randomize_seed:
39
- seed = random.randint(0, MAX_SEED)
40
-
41
- generator = torch.Generator().manual_seed(seed)
42
-
43
- image = pipe(
44
- prompt=prompt,
45
- negative_prompt=negative_prompt,
46
- guidance_scale=guidance_scale,
47
- num_inference_steps=num_inference_steps,
48
- width=width,
49
- height=height,
50
- generator=generator,
51
- ).images[0]
52
-
53
- return image, seed
54
-
55
-
56
- examples = [
57
- "A capybara wearing a suit holding a sign that reads Hello World",
58
- "A serene mountain lake at sunset with cherry blossoms floating on the water",
59
- "A magical crystal dragon with iridescent scales in a glowing forest",
60
- "A Victorian steampunk teapot with intricate brass gears and rose gold accents",
61
- "A futuristic neon cityscape with flying cars and holographic billboards",
62
- "A red panda painter creating a masterpiece with tiny paws in an art studio",
63
- ]
64
-
65
- css = """
66
- body {
67
- background: linear-gradient(135deg, #f9e2e6 0%, #e8f3fc 50%, #e2f9f2 100%);
68
- background-attachment: fixed;
69
- min-height: 100vh;
70
- }
71
-
72
- #col-container {
73
- margin: 0 auto;
74
- max-width: 640px;
75
- background-color: rgba(255, 255, 255, 0.85);
76
- border-radius: 16px;
77
- box-shadow: 0 8px 16px rgba(0, 0, 0, 0.1);
78
- padding: 24px;
79
- backdrop-filter: blur(10px);
80
- }
81
-
82
- .gradio-container {
83
- background: transparent !important;
84
- }
85
-
86
- .gr-button-primary {
87
- background: linear-gradient(90deg, #6b9dfc, #8c6bfc) !important;
88
- border: none !important;
89
- transition: all 0.3s ease;
90
- }
91
-
92
- .gr-button-primary:hover {
93
- transform: translateY(-2px);
94
- box-shadow: 0 5px 15px rgba(108, 99, 255, 0.3);
95
- }
96
-
97
- .gr-form {
98
- border-radius: 12px;
99
- background-color: rgba(255, 255, 255, 0.7);
100
- }
101
-
102
- .gr-accordion {
103
- border-radius: 12px;
104
- overflow: hidden;
105
- }
106
-
107
- h1 {
108
- background: linear-gradient(90deg, #6b9dfc, #8c6bfc);
109
- -webkit-background-clip: text;
110
- -webkit-text-fill-color: transparent;
111
- font-weight: 800;
112
- }
113
- """
114
-
115
- with gr.Blocks(theme="apriel", css=css) as demo:
116
- with gr.Column(elem_id="col-container"):
117
- gr.Markdown(" # TensorArt Stable Diffusion 3.5 Large TurboX")
118
- gr.Markdown("[8-step distilled turbo model](https://huggingface.co/tensorart/stable-diffusion-3.5-large-TurboX)")
119
- with gr.Row():
120
- prompt = gr.Text(
121
- label="Prompt",
122
- show_label=False,
123
- max_lines=1,
124
- placeholder="Enter your prompt",
125
- container=False,
126
- )
127
-
128
- run_button = gr.Button("Run", scale=0, variant="primary")
129
-
130
- result = gr.Image(label="Result", show_label=False)
131
-
132
- with gr.Accordion("Advanced Settings", open=False):
133
- negative_prompt = gr.Text(
134
- label="Negative prompt",
135
- max_lines=1,
136
- placeholder="Enter a negative prompt",
137
- )
138
-
139
- seed = gr.Slider(
140
- label="Seed",
141
- minimum=0,
142
- maximum=MAX_SEED,
143
- step=1,
144
- value=0,
145
- )
146
-
147
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
148
-
149
- with gr.Row():
150
- width = gr.Slider(
151
- label="Width",
152
- minimum=512,
153
- maximum=MAX_IMAGE_SIZE,
154
- step=32,
155
- value=1024,
156
- )
157
-
158
- height = gr.Slider(
159
- label="Height",
160
- minimum=512,
161
- maximum=MAX_IMAGE_SIZE,
162
- step=32,
163
- value=1024,
164
- )
165
-
166
- with gr.Row():
167
- guidance_scale = gr.Slider(
168
- label="Guidance scale",
169
- minimum=0.0,
170
- maximum=7.5,
171
- step=0.1,
172
- value=1.5,
173
- )
174
-
175
- num_inference_steps = gr.Slider(
176
- label="Number of inference steps",
177
- minimum=1,
178
- maximum=50,
179
- step=1,
180
- value=8,
181
- )
182
-
183
- gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=True, cache_mode="lazy")
184
- gr.on(
185
- triggers=[run_button.click, prompt.submit],
186
- fn=infer,
187
- inputs=[
188
- prompt,
189
- negative_prompt,
190
- seed,
191
- randomize_seed,
192
- width,
193
- height,
194
- guidance_scale,
195
- num_inference_steps,
196
- ],
197
- outputs=[result, seed],
198
- )
199
 
200
- if __name__ == "__main__":
201
- demo.launch(mcp_server=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
 
 
 
 
 
2
  import torch
3
+ from PIL import Image
4
+ from transformers import BlipProcessor, BlipForConditionalGeneration
5
 
6
+ # 1. ์žฅ์น˜ ์„ค์ •
7
  device = "cuda" if torch.cuda.is_available() else "cpu"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
+ # 2. ๋ชจ๋ธ ๋ฐ ํ”„๋กœ์„ธ์„œ ๋กœ๋“œ
10
+ processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
11
+ model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(device)
12
+
13
+ # 3. ์ด๋ฏธ์ง€ ์„ค๋ช… ์ƒ์„ฑ ํ•จ์ˆ˜
14
+ def generate_caption(image):
15
+ if image is None:
16
+ return "์ด๋ฏธ์ง€๋ฅผ ์—…๋กœ๋“œํ•ด์ฃผ์„ธ์š”."
17
+
18
+ # ๊ณ ์† ์ฒ˜๋ฆฌ๋ฅผ ์œ„ํ•œ ๋ฆฌ์‚ฌ์ด์ฆˆ
19
+ image = image.resize((384, 384))
20
+
21
+ # ์„ค๋ช… ์ƒ์„ฑ
22
+ inputs = processor(images=image, return_tensors="pt").to(device)
23
+ output_ids = model.generate(**inputs, max_length=50)
24
+ caption = processor.decode(output_ids[0], skip_special_tokens=True)
25
+ print("โœ… ์ƒ์„ฑ๋œ ์„ค๋ช…:", caption)
26
+ if "Asian" in caption:
27
+ caption = caption.replace("Asian", "Korean")
28
+ print("โœ… ์ƒ์„ฑ๋œ ์„ค๋ช…:", caption)
29
+ return caption
30
+ return caption
31
+
32
+ # 4. Gradio ์ธํ„ฐํŽ˜์ด์Šค ๊ตฌ์„ฑ
33
+ with gr.Blocks(title="์ด๋ฏธ์ง€ ์„ค๋ช… ์ƒ์„ฑ๊ธฐ") as demo:
34
+ gr.Markdown("## ๐Ÿ–ผ๏ธ ์ด๋ฏธ์ง€๋ฅผ ์—…๋กœ๋“œํ•˜๋ฉด ์„ค๋ช…์ด ์ž๋™ ์ƒ์„ฑ๋ฉ๋‹ˆ๋‹ค.")
35
+
36
+ with gr.Row():
37
+ with gr.Column():
38
+ image_input = gr.Image(label="์ž…๋ ฅ ์ด๋ฏธ์ง€", type="pil")
39
+ with gr.Column():
40
+ caption_output = gr.Textbox(label="์ƒ์„ฑ๋œ ์„ค๋ช…", lines=3, show_copy_button=True)
41
+ # HTML๋กœ ๋ฒ„ํŠผ ์ƒ์„ฑ
42
+ gr.HTML("""
43
+ <div style='margin-top: 10px; text-align: center;'>
44
+ <a href="https://huggingface.co/spaces/VIDraft/stable-diffusion-3.5-large-turboX" target="_blank">
45
+ <button style='padding: 10px 20px; background-color: #ff9900; color: white; border: none; border-radius: 10px; font-size: 16px; box-shadow: 2px 2px 8px rgba(0,0,0,0.3); cursor: pointer;'>
46
+ ๐ŸŽจ ์บ๋ฆฌ์ปค์ณ ๋งŒ๋“ค๊ธฐ
47
+ </button>
48
+ </a>
49
+ </div>
50
+ """)
51
+
52
+ # ์—…๋กœ๋“œ โ†’ ์„ค๋ช… ์ž๋™ ์ƒ์„ฑ ์—ฐ๊ฒฐ
53
+ image_input.upload(fn=generate_caption, inputs=image_input, outputs=caption_output)
54
+
55
+ # 5. ์•ฑ ์‹คํ–‰
56
+ demo.launch(debug=True)