File size: 4,651 Bytes
c7ec63e dd2bb14 babd923 dd2bb14 babd923 dd2bb14 babd923 c7ec63e dd2bb14 c7ec63e dd2bb14 c7ec63e dd2bb14 c7ec63e babd923 c7ec63e dd2bb14 babd923 c7ec63e babd923 dd2bb14 c7ec63e 505ff46 c7ec63e 92eb8b6 0422b31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os
import joblib
import numpy as np
import librosa
import gradio as gr
from huggingface_hub import hf_hub_download
from deepface import DeepFace
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
# --- 1. 下載並載入 SVM 模型 ---
# 這裡 repo_id 填你的模型倉庫路徑,例如 "GCLing/emotion-svm-model"
# filename 填上傳到該倉庫的檔案名,例如 "svm_emotion_model.joblib"
print("Downloading SVM model from Hugging Face Hub...")
model_path = hf_hub_download(repo_id="GCLing/emotion-svm-model", filename="svm_emotion_model.joblib")
print(f"SVM model downloaded to: {model_path}")
svm_model = joblib.load(model_path)
print("SVM model loaded.")
# --- 2. 載入文字情緒分析模型 ---
# 以 uer/roberta-base-finetuned-chinanews-chinese 為例;可替換成其他合適的中文情感分類模型
print("Loading text sentiment model...")
tokenizer = AutoTokenizer.from_pretrained("uer/roberta-base-finetuned-chinanews-chinese")
model_txt = AutoModelForSequenceClassification.from_pretrained("uer/roberta-base-finetuned-chinanews-chinese")
text_emotion = pipeline("sentiment-analysis", model=model_txt, tokenizer=tokenizer)
print("Text sentiment model loaded.")
# --- 3. 聲音特徵擷取函式 ---
def extract_feature(signal: np.ndarray, sr: int) -> np.ndarray:
"""
從一段音訊 signal (numpy array) 和取樣率 sr 計算 MFCC 特徵 (13 維),
並回傳平均與變異組成的特徵向量 (共 26 維)。
"""
# librosa 載入後 signal 為 float numpy array
mfcc = librosa.feature.mfcc(y=signal, sr=sr, n_mfcc=13)
# axis=1: 每個 MFCC 維度對時間做平均與變異數
return np.concatenate([np.mean(mfcc, axis=1), np.var(mfcc, axis=1)])
# --- 4. 三種預測函式 ---
def predict_face(img: np.ndarray):
print("predict_face called, img is None?", img is None)
# 你的限频和 DeepFace 分析逻辑...
try:
result = DeepFace.analyze(img, actions=["emotion"], detector_backend="opencv")
emo = result.get("emotion", {})
print("DeepFace result:", emo)
return emo
except Exception as e:
print("DeepFace.analyze error:", e)
return {}
def predict_voice(audio):
"""
語音情緒分析:audio 由 Gradio 傳入,形式為暫存檔路徑字串 (str)。
用 librosa.load 讀取,再提取 MFCC 特徵,最後用 SVM 模型 predict_proba。
回傳格式為 dict,例如 {"angry":0.1, "happy":0.7, ...}
"""
# audio 參數為 Gradio Audio 組件給的檔案路徑
signal, sr = librosa.load(audio, sr=None)
feat = extract_feature(signal, sr)
probs = svm_model.predict_proba([feat])[0]
labels = svm_model.classes_
return {labels[i]: float(probs[i]) for i in range(len(labels))}
def predict_text(text: str):
def predict_text(text: str):
print("predict_text called, text:", text)
if not text or text.strip()=="":
return {}
try:
pred = text_emotion(text)[0]
result = {pred["label"]: float(pred["score"])}
print("Text sentiment result:", result)
return result
except Exception as e:
print("predict_text error:", e)
return {}
# --- 5. 建立 Gradio 介面 ---
with gr.Blocks() as demo:
gr.Markdown("## 多模態即時情緒分析")
with gr.Tabs():
# 臉部情緒 Tab
with gr.TabItem("臉部情緒"):
gr.Markdown("### 臉部情緒 (即時 Webcam Streaming 分析)")
with gr.Row():
webcam = gr.Image(sources="webcam", streaming=True, type="numpy", label="攝像頭畫面")
emotion_output = gr.Label(label="情緒分布")
webcam.stream(fn=predict_face, inputs=webcam, outputs=emotion_output)
# 其餘 Tab 可按原先寫法,或用 Blocks 方式
with gr.TabItem("語音情緒"):
audio = gr.Audio(sources="microphone", streaming=False, type="filepath", label="錄音")
audio_output = gr.Label(label="語音情緒結果")
# 用 change/submit 触发:录音结束后调用 predict_voice
audio.change(fn=predict_voice, inputs=audio, outputs=audio_output)
with gr.TabItem("文字情緒"):
text = gr.Textbox(lines=3, placeholder="請輸入中文文字…")
text_output = gr.Label(label="文字情緒結果")
btn = gr.Button("分析文字")
btn.click(fn=predict_text, inputs=text, outputs=text_output)
if __name__ == "__main__":
demo.launch()
# 不要传 server_name 或 server_port
|