Update app.py
Browse files
app.py
CHANGED
@@ -1,133 +1,127 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
import os, time, re
|
4 |
import numpy as np
|
5 |
import joblib
|
6 |
import librosa
|
|
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
-
from deepface import DeepFace
|
9 |
-
from transformers import pipeline
|
10 |
-
# 如果不手动用 AutoTokenizer/AutoModel,就不必 import AutoTokenizer, AutoModelForSequenceClassification
|
11 |
-
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
# --- 1.
|
15 |
print("Downloading SVM model from Hugging Face Hub...")
|
16 |
model_path = hf_hub_download(repo_id="GCLing/emotion-svm-model", filename="svm_emotion_model.joblib")
|
17 |
-
print(f"SVM model downloaded to: {model_path}")
|
18 |
svm_model = joblib.load(model_path)
|
19 |
print("SVM model loaded.")
|
20 |
|
21 |
-
# --- 2.
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
27 |
|
28 |
-
candidate_labels = ["joy", "sadness", "anger", "fear", "surprise", "disgust"]
|
29 |
-
label_map_en2cn = {
|
30 |
-
"joy": "高興", "sadness": "悲傷", "anger": "憤怒",
|
31 |
-
"fear": "恐懼", "surprise": "驚訝", "disgust": "厭惡"
|
32 |
-
}
|
33 |
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
emo_keywords = {
|
36 |
"happy": ["開心","快樂","愉快","喜悦","喜悅","歡喜","興奮","高興"],
|
37 |
"angry": ["生氣","憤怒","不爽","發火","火大","氣憤"],
|
38 |
"sad": ["傷心","難過","哭","難受","心酸","憂","悲","哀","痛苦","慘","愁"],
|
39 |
"surprise": ["驚訝","意外","嚇","驚詫","詫異","訝異","好奇"],
|
40 |
"fear": ["怕","恐懼","緊張","懼","膽怯","畏"],
|
41 |
-
"disgust": ["噁心","厭惡","反感"]
|
42 |
}
|
43 |
-
# 否定词列表
|
44 |
negations = ["不","沒","沒有","別","勿","非"]
|
45 |
-
|
46 |
def keyword_emotion(text: str):
|
47 |
-
|
48 |
-
|
49 |
-
返回 None 或 {} 表示规则未命中;否则返回非空 dict,例如 {'angry': 2, 'sad':1} 或归一化 {'angry':0.67,'sad':0.33}。
|
50 |
-
"""
|
51 |
-
if not text or text.strip() == "":
|
52 |
-
return None
|
53 |
-
text_proc = text.strip() # 中文不需要 lower
|
54 |
-
counts = {emo: 0 for emo in emo_keywords}
|
55 |
for emo, kws in emo_keywords.items():
|
56 |
for w in kws:
|
57 |
idx = text_proc.find(w)
|
58 |
-
if idx
|
59 |
-
|
60 |
-
neg = False
|
61 |
for neg_word in negations:
|
62 |
plen = len(neg_word)
|
63 |
-
if idx
|
64 |
-
neg
|
65 |
-
break
|
66 |
if not neg:
|
67 |
-
counts[emo]
|
68 |
-
else:
|
69 |
-
# 若否定,可选择减分或忽略;这里忽略
|
70 |
-
pass
|
71 |
total = sum(counts.values())
|
72 |
-
if total
|
73 |
-
#
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
|
78 |
def predict_text_mixed(text: str):
|
79 |
-
""
|
80 |
-
|
81 |
-
返回 dict[str, float],供 Gradio Label 显示。
|
82 |
-
"""
|
83 |
-
print("predict_text_mixed called, text:", repr(text))
|
84 |
-
if not text or text.strip() == "":
|
85 |
-
print("輸入為空,返回空")
|
86 |
return {}
|
87 |
-
# 规则优先
|
88 |
res = keyword_emotion(text)
|
89 |
-
print("keyword_emotion result:", res)
|
90 |
if res:
|
91 |
-
#
|
92 |
-
top_emo = max(res, key=res.get) # 例如 "angry"
|
93 |
mapping = {
|
94 |
-
"happy":
|
95 |
-
"
|
96 |
-
"sad": "悲傷",
|
97 |
-
"surprise": "驚訝",
|
98 |
-
"fear": "恐懼",
|
99 |
-
"disgust": "厭惡"
|
100 |
}
|
101 |
-
|
102 |
-
|
103 |
-
print(f"使用規則方法,返回: {{'{cn}': {prob}}}")
|
104 |
return {cn: prob}
|
105 |
-
#
|
106 |
-
|
107 |
-
print("zero_shot pipeline 未加载,返回中性")
|
108 |
-
return {"中性": 1.0}
|
109 |
-
try:
|
110 |
-
out = zero_shot(text, candidate_labels=candidate_labels,
|
111 |
-
hypothesis_template="这句話表達了{}情緒")
|
112 |
-
print("zero-shot 返回:", out)
|
113 |
-
result = {}
|
114 |
-
for lab, sc in zip(out["labels"], out["scores"]):
|
115 |
-
cn = label_map_en2cn.get(lab.lower(), lab)
|
116 |
-
result[cn] = float(sc)
|
117 |
-
print("zero-shot 结果映射中文:", result)
|
118 |
-
return result
|
119 |
-
except Exception as e:
|
120 |
-
print("zero-shot error:", e)
|
121 |
-
return {"中性": 1.0}
|
122 |
|
123 |
-
# --- 3.
|
124 |
def extract_feature(signal: np.ndarray, sr: int) -> np.ndarray:
|
125 |
mfcc = librosa.feature.mfcc(y=signal, sr=sr, n_mfcc=13)
|
126 |
return np.concatenate([np.mean(mfcc, axis=1), np.var(mfcc, axis=1)])
|
127 |
|
128 |
def predict_voice(audio_path: str):
|
129 |
if not audio_path:
|
130 |
-
print("predict_voice: 无 audio_path,跳过")
|
131 |
return {}
|
132 |
try:
|
133 |
signal, sr = librosa.load(audio_path, sr=None)
|
@@ -139,10 +133,9 @@ def predict_voice(audio_path: str):
|
|
139 |
print("predict_voice error:", e)
|
140 |
return {}
|
141 |
|
142 |
-
# --- 4.
|
143 |
def predict_face(img: np.ndarray):
|
144 |
-
|
145 |
-
if img is None:
|
146 |
return {}
|
147 |
try:
|
148 |
res = DeepFace.analyze(img, actions=["emotion"], detector_backend="opencv")
|
@@ -151,28 +144,27 @@ def predict_face(img: np.ndarray):
|
|
151 |
emo = first.get("emotion", {}) if isinstance(first, dict) else {}
|
152 |
else:
|
153 |
emo = res.get("emotion", {}) if isinstance(res, dict) else {}
|
154 |
-
|
155 |
-
emo_fixed = {k: float(v) for k, v in emo.items()}
|
156 |
-
print("predict_face result:", emo_fixed)
|
157 |
-
return emo_fixed
|
158 |
except Exception as e:
|
159 |
print("DeepFace.analyze error:", e)
|
160 |
return {}
|
161 |
|
162 |
-
# --- 5. Gradio
|
163 |
def build_interface():
|
164 |
with gr.Blocks() as demo:
|
165 |
gr.Markdown("## 多模態情緒分析示例")
|
166 |
with gr.Tabs():
|
167 |
# 臉部 Tab
|
168 |
-
|
169 |
-
gr.
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
|
|
|
|
176 |
|
177 |
# 語音 Tab
|
178 |
with gr.TabItem("語音情緒"):
|
@@ -180,25 +172,18 @@ def build_interface():
|
|
180 |
with gr.Row():
|
181 |
audio = gr.Audio(source="microphone", streaming=False, type="filepath", label="錄音")
|
182 |
voice_out = gr.Label(label="語音情緒結果")
|
183 |
-
|
184 |
|
185 |
# 文字 Tab
|
186 |
with gr.TabItem("文字情緒"):
|
187 |
-
gr.Markdown("### 文字情緒 分析 (
|
188 |
with gr.Row():
|
189 |
text = gr.Textbox(lines=3, placeholder="請輸入中文文字…")
|
190 |
text_out = gr.Label(label="文字情緒結果")
|
191 |
text.submit(fn=predict_text_mixed, inputs=text, outputs=text_out)
|
192 |
-
# 或者按钮:
|
193 |
-
# btn = gr.Button("分析")
|
194 |
-
# btn.click(fn=predict_text_mixed, inputs=text, outputs=text_out)
|
195 |
-
|
196 |
-
# 或按鈕:
|
197 |
-
# btn = gr.Button("分析")
|
198 |
-
# btn.click(fn=predict_text_mixed, inputs=text, outputs=text_out)
|
199 |
return demo
|
200 |
|
201 |
-
# --- 4. 啟動 ---
|
202 |
if __name__ == "__main__":
|
203 |
demo = build_interface()
|
|
|
204 |
demo.launch(share=True)
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
|
|
3 |
import numpy as np
|
4 |
import joblib
|
5 |
import librosa
|
6 |
+
import requests
|
7 |
from huggingface_hub import hf_hub_download
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
# --- DeepFace 条件导入 ---
|
10 |
+
try:
|
11 |
+
from deepface import DeepFace
|
12 |
+
has_deepface = True
|
13 |
+
except ImportError:
|
14 |
+
print("本地未安装 deepface,将在本地跳过臉部情緒;Space 上会安装 deepface。")
|
15 |
+
has_deepface = False
|
16 |
|
17 |
+
# --- 1. 语音 SVM 加载 ---
|
18 |
print("Downloading SVM model from Hugging Face Hub...")
|
19 |
model_path = hf_hub_download(repo_id="GCLing/emotion-svm-model", filename="svm_emotion_model.joblib")
|
|
|
20 |
svm_model = joblib.load(model_path)
|
21 |
print("SVM model loaded.")
|
22 |
|
23 |
+
# --- 2. 文本情绪分析:改用 Inference API ---
|
24 |
+
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
25 |
+
if HF_API_TOKEN is None:
|
26 |
+
print("警告:未检测到 HF_API_TOKEN,Inference API 可能失败。")
|
27 |
+
# 选用公开存在的中文情感分类模型
|
28 |
+
HF_TEXT_MODEL = "uer/roberta-base-finetuned-dianping-chinese"
|
29 |
+
HF_API_URL = f"https://api-inference.huggingface.co/models/{HF_TEXT_MODEL}"
|
30 |
+
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"} if HF_API_TOKEN else {}
|
31 |
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
def predict_text_via_api(text: str):
|
34 |
+
if not text or text.strip()=="":
|
35 |
+
return {}
|
36 |
+
payload = {"inputs": text}
|
37 |
+
try:
|
38 |
+
resp = requests.post(HF_API_URL, headers=headers, json=payload, timeout=30)
|
39 |
+
if resp.status_code != 200:
|
40 |
+
print(f"Inference API 返回状态码 {resp.status_code}: {resp.text}")
|
41 |
+
# 退回到简单规则或中性
|
42 |
+
return {"中性": 1.0}
|
43 |
+
data = resp.json()
|
44 |
+
# 根据模型返回格式解析:假设返回 [{"label": "...", "score": ...}, ...]
|
45 |
+
if isinstance(data, list) and len(data)>0 and isinstance(data[0], dict):
|
46 |
+
# 选 top 3 展示
|
47 |
+
result = {}
|
48 |
+
for item in data[:3]:
|
49 |
+
lbl = item.get("label", "")
|
50 |
+
score = item.get("score", 0.0)
|
51 |
+
# 若标签是英文,可映射到中文;若就是中文可直接用
|
52 |
+
# 例如模型返回 "positive"/"negative"/"neutral",可映射:
|
53 |
+
if lbl.lower() in ["positive","pos","正面"]:
|
54 |
+
cn = "正面"
|
55 |
+
elif lbl.lower() in ["negative","neg","负面","負面"]:
|
56 |
+
cn = "負面"
|
57 |
+
elif lbl.lower() in ["neutral","中性"]:
|
58 |
+
cn = "中性"
|
59 |
+
else:
|
60 |
+
cn = lbl
|
61 |
+
result[cn] = float(score)
|
62 |
+
return result
|
63 |
+
else:
|
64 |
+
print("Inference API 返回格式异常:", data)
|
65 |
+
return {"中性": 1.0}
|
66 |
+
except Exception as e:
|
67 |
+
print("调用 Inference API 出错:", e)
|
68 |
+
return {"中性": 1.0}
|
69 |
+
|
70 |
+
# 可保留简单规则优先,若规则命中则返回规则,否则调用 API
|
71 |
emo_keywords = {
|
72 |
"happy": ["開心","快樂","愉快","喜悦","喜悅","歡喜","興奮","高興"],
|
73 |
"angry": ["生氣","憤怒","不爽","發火","火大","氣憤"],
|
74 |
"sad": ["傷心","難過","哭","難受","心酸","憂","悲","哀","痛苦","慘","愁"],
|
75 |
"surprise": ["驚訝","意外","嚇","驚詫","詫異","訝異","好奇"],
|
76 |
"fear": ["怕","恐懼","緊張","懼","膽怯","畏"],
|
77 |
+
"disgust": ["噁心","厭惡","反感"]
|
78 |
}
|
|
|
79 |
negations = ["不","沒","沒有","別","勿","非"]
|
|
|
80 |
def keyword_emotion(text: str):
|
81 |
+
text_proc = text.strip()
|
82 |
+
counts = {emo:0 for emo in emo_keywords}
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
for emo, kws in emo_keywords.items():
|
84 |
for w in kws:
|
85 |
idx = text_proc.find(w)
|
86 |
+
if idx!=-1:
|
87 |
+
neg=False
|
|
|
88 |
for neg_word in negations:
|
89 |
plen = len(neg_word)
|
90 |
+
if idx-plen>=0 and text_proc[idx-plen:idx]==neg_word:
|
91 |
+
neg=True; break
|
|
|
92 |
if not neg:
|
93 |
+
counts[emo]+=1
|
|
|
|
|
|
|
94 |
total = sum(counts.values())
|
95 |
+
if total>0:
|
96 |
+
# 归一化并取最高
|
97 |
+
top = max(counts, key=lambda k: counts[k])
|
98 |
+
return {top: counts[top]/total}
|
99 |
+
return None
|
100 |
|
101 |
def predict_text_mixed(text: str):
|
102 |
+
print("predict_text_mixed:", text)
|
103 |
+
if not text or text.strip()=="":
|
|
|
|
|
|
|
|
|
|
|
104 |
return {}
|
|
|
105 |
res = keyword_emotion(text)
|
|
|
106 |
if res:
|
107 |
+
# 映射中文标签
|
|
|
108 |
mapping = {
|
109 |
+
"happy":"高興","angry":"憤怒","sad":"悲傷",
|
110 |
+
"surprise":"驚訝","fear":"恐懼","disgust":"厭惡"
|
|
|
|
|
|
|
|
|
111 |
}
|
112 |
+
emo = list(res.keys())[0]; prob = float(res[emo])
|
113 |
+
cn = mapping.get(emo, emo)
|
|
|
114 |
return {cn: prob}
|
115 |
+
# 规则未命中,调用 Inference API
|
116 |
+
return predict_text_via_api(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
+
# --- 3. 语音情绪预测 ---
|
119 |
def extract_feature(signal: np.ndarray, sr: int) -> np.ndarray:
|
120 |
mfcc = librosa.feature.mfcc(y=signal, sr=sr, n_mfcc=13)
|
121 |
return np.concatenate([np.mean(mfcc, axis=1), np.var(mfcc, axis=1)])
|
122 |
|
123 |
def predict_voice(audio_path: str):
|
124 |
if not audio_path:
|
|
|
125 |
return {}
|
126 |
try:
|
127 |
signal, sr = librosa.load(audio_path, sr=None)
|
|
|
133 |
print("predict_voice error:", e)
|
134 |
return {}
|
135 |
|
136 |
+
# --- 4. 人脸情绪预测 ---
|
137 |
def predict_face(img: np.ndarray):
|
138 |
+
if not has_deepface or img is None:
|
|
|
139 |
return {}
|
140 |
try:
|
141 |
res = DeepFace.analyze(img, actions=["emotion"], detector_backend="opencv")
|
|
|
144 |
emo = first.get("emotion", {}) if isinstance(first, dict) else {}
|
145 |
else:
|
146 |
emo = res.get("emotion", {}) if isinstance(res, dict) else {}
|
147 |
+
return {k: float(v) for k,v in emo.items()}
|
|
|
|
|
|
|
148 |
except Exception as e:
|
149 |
print("DeepFace.analyze error:", e)
|
150 |
return {}
|
151 |
|
152 |
+
# --- 5. Gradio 界面:用 gr.components.Camera ---
|
153 |
def build_interface():
|
154 |
with gr.Blocks() as demo:
|
155 |
gr.Markdown("## 多模態情緒分析示例")
|
156 |
with gr.Tabs():
|
157 |
# 臉部 Tab
|
158 |
+
if has_deepface:
|
159 |
+
with gr.TabItem("臉部情緒"):
|
160 |
+
gr.Markdown("### 臉部情緒 (即時 Webcam Streaming 分析)")
|
161 |
+
with gr.Row():
|
162 |
+
webcam = gr.components.Camera(streaming=True, type="numpy", label="攝像頭畫面")
|
163 |
+
face_out = gr.Label(label="情緒分布")
|
164 |
+
webcam.stream(fn=predict_face, inputs=webcam, outputs=face_out)
|
165 |
+
else:
|
166 |
+
with gr.TabItem("臉部情緒 (本地跳过)"):
|
167 |
+
gr.Markdown("本地未安装 deepface,此功能本地跳过;Space 上可正常运行。")
|
168 |
|
169 |
# 語音 Tab
|
170 |
with gr.TabItem("語音情緒"):
|
|
|
172 |
with gr.Row():
|
173 |
audio = gr.Audio(source="microphone", streaming=False, type="filepath", label="錄音")
|
174 |
voice_out = gr.Label(label="語音情緒結果")
|
175 |
+
audio.change(fn=predict_voice, inputs=audio, outputs=voice_out)
|
176 |
|
177 |
# 文字 Tab
|
178 |
with gr.TabItem("文字情緒"):
|
179 |
+
gr.Markdown("### 文字情緒 分析 (规则+Inference API)")
|
180 |
with gr.Row():
|
181 |
text = gr.Textbox(lines=3, placeholder="請輸入中文文字…")
|
182 |
text_out = gr.Label(label="文字情緒結果")
|
183 |
text.submit(fn=predict_text_mixed, inputs=text, outputs=text_out)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
return demo
|
185 |
|
|
|
186 |
if __name__ == "__main__":
|
187 |
demo = build_interface()
|
188 |
+
# share=True 可在本地测试时生成临时公网链接
|
189 |
demo.launch(share=True)
|