GCLing's picture
Create app.py
357796f verified
raw
history blame
1.23 kB
# app.py
import os
# —— 把 DeepFace 缓存目录指向可写的 /tmp/.deepface
os.environ["DEEPFACE_HOME"] = "/tmp/.deepface"
os.makedirs(os.environ["DEEPFACE_HOME"], exist_ok=True)
import gradio as gr
import cv2
import numpy as np
from deepface import DeepFace
def face_emotion(frame: np.ndarray) -> str:
"""
接收 gr.Camera 给出的 RGB ndarray,
转成 BGR 后交给 DeepFace 分析情绪。
"""
# RGB → BGR
bgr = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
res = DeepFace.analyze(
bgr,
actions=['emotion'],
enforce_detection=False
)
# DeepFace 支持 list 或 dict 返回
if isinstance(res, list):
emo = res[0].get('dominant_emotion', 'unknown')
else:
emo = res.get('dominant_emotion', 'unknown')
return emo
# —— Gradio 前端 ——
with gr.Blocks() as demo:
gr.Markdown("## 📱 多模態即時情緒分析(示範:即時人臉情緒)")
camera = gr.Camera(label="請對準鏡頭", type="numpy")
output = gr.Textbox(label="偵測到的情緒")
# 实时流:fps 可以调低一点,减轻服务器压力
camera.stream(face_emotion, camera, output, fps=5)
if __name__ == "__main__":
demo.launch()