GH111 commited on
Commit
933e9b4
·
1 Parent(s): acd218e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -42
app.py CHANGED
@@ -1,46 +1,9 @@
1
  import streamlit as st
2
 
3
  from transformers import pipeline
4
- from googletrans import Translator
5
- from gtts import gTTS
6
- from playsound import playsound
7
 
8
- # Define language models and initialize pipelines
9
- bart_model_name = "facebook/bart-large"
10
- bart_pipeline = pipeline("text-generation", model=bart_model_name)
11
-
12
- # Define translator
13
- translator = Translator()
14
-
15
- # Function to generate text and translate to desired language
16
- def generate_and_translate_text(prompt, target_lang):
17
- # Generate text
18
- generated_text = bart_pipeline(prompt)[0]["generated_text"]
19
-
20
- # Translate text
21
- if target_lang != "en":
22
- translated_text = translator.translate(generated_text, dest=target_lang).text
23
- return translated_text
24
- else:
25
- return generated_text
26
-
27
- # Function to convert text to speech
28
- def text_to_speech(text):
29
- # Create audio file
30
- audio_file = gTTS(text)
31
- audio_file.save("story.mp3")
32
-
33
- # Play audio file
34
- playsound("story.mp3")
35
-
36
- # User input
37
- prompt = input("Enter your story prompt: ")
38
- target_lang = input("Choose target language (default: English): ")
39
-
40
- # Generate and translate story text
41
- story_text = generate_and_translate_text(prompt, target_lang)
42
-
43
- print(f"Story: {story_text}")
44
-
45
- # Convert story text to speech
46
- text_to_speech(story_text)
 
1
  import streamlit as st
2
 
3
  from transformers import pipeline
 
 
 
4
 
5
+ pipe = pipeline('sentiment-analysis')
6
+ text = st.text_area('enter some text!')
7
+ if text :
8
+ out=pipe(text)
9
+ st.json(out)