# Import libraries import gradio as gr from transformers import pipeline from gtts import gTTS from io import BytesIO from PIL import Image # Create a text generation pipeline with GPT-2 story_generator = pipeline("text-generation", model="EleutherAI/gpt-neo-1.3B") # Set the context for the storyteller messages = [{"role": "system", "content": "You are a magical storyteller, creating wonderful tales for kids. Make them imaginative and full of joy!"}] # Define the Storyteller function def StorytellerGPT(character, child_name, lesson_choice, tell_story): # Set the characters and lesson based on user choices character_info = f"Once upon a time, {child_name} met {character}. " lesson_info = f"Today's lesson is about {lesson_choice}. " messages.append({"role": "user", "content": tell_story}) # Generate story using Hugging Face's GPT-2 story_reply = story_generator(character_info + lesson_info + tell_story, max_length=150, num_return_sequences=1)[0]['generated_text'] messages.append({"role": "assistant", "content": story_reply}) # Convert text to speech tts = gTTS(text=story_reply, lang='en', slow=False) audio_io = BytesIO() tts.save(audio_io) audio_io.seek(0) # Convert text to image image = Image.new("RGB", (300, 300), (255, 255, 255)) image_path = "/path/to/output/image.png" image.save(image_path) return story_reply, Audio(data=audio_io.read(), autoplay=True), image # Create the Gradio Interface demo = gr.Interface( fn=StorytellerGPT, inputs=[ gr.Textbox("text", label="Child's Name"), gr.Dropdown(["unicorn", "dragon", "wizard"], label="Choose a Character"), gr.Dropdown(["kindness", "creativity", "bravery"], label="Choose a Lesson"), gr.Textbox("text", label="Start the Story with"), ], outputs=["text", "audio", "image"], title="📖 Storytelling Magic", description="A magical storyteller app for kids! Choose characters, add your name, and select the lesson you want to learn.", ) # Launch the Gradio Interface demo.launch(