Spaces:
Sleeping
Sleeping
File size: 16,800 Bytes
0130713 1bfcfd5 c2f0c5c c258cbb 5a1352d c567921 8fdd4c1 8225c93 cb359de 9d9ace2 53d69f4 08da20e 1bfcfd5 5fc3c7d 08da20e 1bfcfd5 d237e1f 1bfcfd5 d237e1f 1bfcfd5 d237e1f 1bfcfd5 035b045 1bfcfd5 d237e1f 1bfcfd5 035b045 1bfcfd5 7b37585 1bfcfd5 47177b9 f5dac9b 0130713 47177b9 3346614 7b37585 e4b8dd5 88e2023 9392032 47177b9 7da963b 47177b9 7da963b 47177b9 c567921 7da963b 5170600 b08d54a 5a1352d 48484fb 8fdd4c1 d845358 8fdd4c1 d845358 043c4b1 d845358 043c4b1 8fdd4c1 043c4b1 8fdd4c1 043c4b1 8fdd4c1 d845358 88e2023 8fdd4c1 17d08d8 d845358 7b37585 5620c68 d845358 7b37585 d845358 7b37585 77a1d81 7b37585 d845358 59e8a6b d9b0f82 47177b9 d6bab54 47177b9 5ee7936 47177b9 5ee7936 47177b9 d6bab54 47177b9 5ee7936 d6bab54 7b37585 5ee7936 d6bab54 a5158de 7b37585 d6bab54 7b37585 82254d1 d6bab54 3c0dd7e 5fc3c7d 67f6d38 7b37585 a5158de 7b37585 a5158de 5ee7936 47177b9 7b37585 47177b9 a5158de d6bab54 47177b9 7b37585 47177b9 7b37585 47177b9 7b37585 d6bab54 82254d1 7b37585 d6bab54 d845358 3c0dd7e 1bfcfd5 77a1d81 7b37585 77a1d81 47177b9 7b37585 d6bab54 47177b9 7b37585 47177b9 7b37585 d6bab54 d845358 47177b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
import streamlit as st
import requests
import pandas as pd
from appStore.prep_data import process_giz_worldwide, remove_duplicates, get_max_end_year, extract_year
from appStore.prep_utils import create_documents, get_client
from appStore.embed import hybrid_embed_chunks
from appStore.search import hybrid_search
from appStore.region_utils import load_region_data, get_country_name, get_regions
from appStore.tfidf_extraction import extract_top_keywords
from torch import cuda
import json
from datetime import datetime
#model_config = getconfig("model_params.cfg")
###########
# ToDo move to functions
# Configuration for the dedicated model
DEDICATED_MODEL = "meta-llama/Llama-3.1-8B-Instruct"
DEDICATED_ENDPOINT = "https://qu2d8m6dmsollhly.us-east-1.aws.endpoints.huggingface.cloud"
# Write access token from the settings
WRITE_ACCESS_TOKEN = st.secrets["Llama_3_1"]
def get_rag_answer(query, top_results):
"""
Constructs a prompt from the query and the page contexts of the top results,
truncates the context to avoid exceeding the token limit, then sends it to the
dedicated endpoint and returns only the generated answer.
"""
# Combine the context from the top results (adjust the separator as needed)
context = "\n\n".join([res.payload["page_content"] for res in top_results])
# Truncate the context to a maximum number of characters (e.g., 12000 characters)
max_context_chars = 15000
if len(context) > max_context_chars:
context = context[:max_context_chars]
# Build the prompt, instructing the model to only output the final answer.
prompt = (
"Using the following context, answer the question concisely. "
"Only output the final answer below, without repeating the context or question.\n\n"
f"Context:\n{context}\n\n"
f"Question: {query}\n\n"
"Answer:"
)
headers = {"Authorization": f"Bearer {WRITE_ACCESS_TOKEN}"}
payload = {
"inputs": prompt,
"parameters": {
"max_new_tokens": 150 # Adjust max tokens as needed
}
}
response = requests.post(DEDICATED_ENDPOINT, headers=headers, json=payload)
if response.status_code == 200:
result = response.json()
answer = result[0]["generated_text"]
# If the model returns the full prompt, split and extract only the portion after "Answer:"
if "Answer:" in answer:
answer = answer.split("Answer:")[-1].strip()
return answer
else:
return f"Error in generating answer: {response.text}"
#######
# Helper function: Format project id (e.g., "201940485" -> "2019.4048.5")
def format_project_id(pid):
s = str(pid)
if len(s) > 5:
return s[:4] + "." + s[4:-1] + "." + s[-1]
return s
# Helper function: Compute title from metadata using name.en (or name.de if empty)
def compute_title(metadata):
name_en = metadata.get("name.en", "").strip()
name_de = metadata.get("name.de", "").strip()
base = name_en if name_en else name_de
pid = metadata.get("id", "")
if base and pid:
return f"{base} [{format_project_id(pid)}]"
return base or "No Title"
# Helper function: Get CRS filter options from all documents in the collection
@st.cache_data
def get_crs_options(client, collection_name):
results = hybrid_search(client, "", collection_name)
all_results = results[0] + results[1]
crs_set = set()
for res in all_results:
metadata = res.payload.get('metadata', {})
crs_key = metadata.get("crs_key", "").strip()
crs_value = metadata.get("crs_value", "").strip()
if crs_key or crs_value:
crs_combined = f"{crs_key}: {crs_value}"
crs_set.add(crs_combined)
return sorted(crs_set)
# Update filter_results to also filter by crs_combined.
def filter_results(results, country_filter, region_filter, end_year_range, crs_filter):
filtered = []
for r in results:
metadata = r.payload.get('metadata', {})
countries = metadata.get('countries', "[]")
year_str = metadata.get('end_year')
if year_str:
extracted = extract_year(year_str)
try:
end_year_val = int(extracted) if extracted != "Unknown" else 0
except ValueError:
end_year_val = 0
else:
end_year_val = 0
try:
c_list = json.loads(countries.replace("'", '"'))
c_list = [code.upper() for code in c_list if len(code) == 2]
except json.JSONDecodeError:
c_list = []
selected_iso_code = country_name_mapping.get(country_filter, None)
if region_filter != "All/Not allocated":
countries_in_region = [code for code in c_list if iso_code_to_sub_region.get(code) == region_filter]
else:
countries_in_region = c_list
# Filter by CRS: compute crs_combined and compare to the selected filter.
crs_key = metadata.get("crs_key", "").strip()
crs_value = metadata.get("crs_value", "").strip()
crs_combined = f"{crs_key}: {crs_value}" if (crs_key or crs_value) else ""
if crs_filter != "All/Not allocated" and crs_filter != crs_combined:
continue
if ((country_filter == "All/Not allocated" or selected_iso_code in c_list)
and (region_filter == "All/Not allocated" or countries_in_region)
and (end_year_range[0] <= end_year_val <= end_year_range[1])):
filtered.append(r)
return filtered
#######
# get the device to be used eithe gpu or cpu
device = 'cuda' if cuda.is_available() else 'cpu'
st.set_page_config(page_title="SEARCH IATI",layout='wide')
st.title("GIZ Project Database (PROTOTYPE)")
var = st.text_input("Enter Search Question")
# Load the region lookup CSV
region_lookup_path = "docStore/regions_lookup.csv"
region_df = load_region_data(region_lookup_path)
#################### Create the embeddings collection and save ######################
# the steps below need to be performed only once and then commented out any unnecssary compute over-run
##### First we process and create the chunks for relvant data source
#chunks = process_giz_worldwide()
##### Convert to langchain documents
#temp_doc = create_documents(chunks,'chunks')
##### Embed and store docs, check if collection exist then you need to update the collection
collection_name = "giz_worldwide"
#hybrid_embed_chunks(docs=temp_doc, collection_name=collection_name, del_if_exists=True)
################### Hybrid Search #####################################################
client = get_client()
print(client.get_collections())
max_end_year = get_max_end_year(client, collection_name)
_, unique_sub_regions = get_regions(region_df)
@st.cache_data
def get_country_name_and_region_mapping(_client, collection_name, region_df):
results = hybrid_search(_client, "", collection_name)
country_set = set()
for res in results[0] + results[1]:
countries = res.payload.get('metadata', {}).get('countries', "[]")
try:
country_list = json.loads(countries.replace("'", '"'))
two_digit_codes = [code.upper() for code in country_list if len(code) == 2]
country_set.update(two_digit_codes)
except json.JSONDecodeError:
pass
country_name_to_code = {}
iso_code_to_sub_region = {}
for code in country_set:
name = get_country_name(code, region_df)
sub_region_row = region_df[region_df['alpha-2'] == code]
sub_region = sub_region_row['sub-region'].values[0] if not sub_region_row.empty else "Not allocated"
country_name_to_code[name] = code
iso_code_to_sub_region[code] = sub_region
return country_name_to_code, iso_code_to_sub_region
client = get_client()
country_name_mapping, iso_code_to_sub_region = get_country_name_and_region_mapping(client, collection_name, region_df)
unique_country_names = sorted(country_name_mapping.keys()) # List of country names
# Layout filters in columns: add a new filter for CRS in col4.
col1, col2, col3, col4 = st.columns([1, 1, 1, 4])
with col1:
region_filter = st.selectbox("Region", ["All/Not allocated"] + sorted(unique_sub_regions))
with col2:
country_filter = st.selectbox("Country", ["All/Not allocated"] + filtered_country_names if (filtered_country_names := unique_country_names) else unique_country_names)
with col3:
current_year = datetime.now().year
default_start_year = current_year - 4
end_year_range = st.slider("Project End Year", min_value=2010, max_value=max_end_year, value=(default_start_year, max_end_year))
with col4:
crs_options = ["All/Not allocated"] + get_crs_options(client, collection_name)
crs_filter = st.selectbox("CRS", crs_options)
# Checkbox to control whether to show only exact matches
show_exact_matches = st.checkbox("Show only exact matches", value=False)
# Run the search
# 1) Adjust limit so we get more than 15 results
results = hybrid_search(client, var, collection_name, limit=500) # e.g., 100 or 200
# results is a tuple: (semantic_results, lexical_results)
semantic_all = results[0]
lexical_all = results[1]
# 2) Filter out content < 20 chars (as intermediate fix to problem that e.g. super short paragraphs with few chars get high similarity score)
semantic_all = [
r for r in semantic_all if len(r.payload["page_content"]) >= 5
]
lexical_all = [
r for r in lexical_all if len(r.payload["page_content"]) >= 5
]
# 2) Apply a threshold to SEMANTIC results (score >= 0.4)
semantic_thresholded = [r for r in semantic_all if r.score >= 0.0]
filtered_semantic = filter_results(semantic_thresholded, country_filter, region_filter, end_year_range, crs_filter)
filtered_lexical = filter_results(lexical_all, country_filter, region_filter, end_year_range, crs_filter)
filtered_semantic_no_dupe = remove_duplicates(filtered_semantic) # ToDo remove duplicates again?
filtered_lexical_no_dupe = remove_duplicates(filtered_lexical)
# Define a helper function to format currency values
def format_currency(value):
try:
# Convert to float then int for formatting (assumes whole numbers)
return f"€{int(float(value)):,}"
except (ValueError, TypeError):
return value
# Helper function to highlight query matches (case-insensitive)
def highlight_query(text, query):
pattern = re.compile(re.escape(query), re.IGNORECASE)
return pattern.sub(lambda m: f"**{m.group(0)}**", text)
###############################
# Display Lexical Results Branch
###############################
if show_exact_matches:
st.write(f"Showing **Top 15 Lexical Search results** for query: {var}")
query_substring = var.strip().lower()
lexical_substring_filtered = [r for r in lexical_all if query_substring in r.payload["page_content"].lower()]
filtered_lexical = filter_results(lexical_substring_filtered, country_filter, region_filter, end_year_range, crs_filter)
filtered_lexical_no_dupe = remove_duplicates(filtered_lexical)
if not filtered_lexical_no_dupe:
st.write('No exact matches, consider unchecking "Show only exact matches"')
else:
top_results = filtered_lexical_no_dupe[:5]
rag_answer = get_rag_answer(var, top_results)
st.markdown("### Generated Answer")
st.write(rag_answer)
st.divider()
for res in top_results:
metadata = res.payload.get('metadata', {})
# Compute new title if not already set
if "title" not in metadata:
metadata["title"] = compute_title(metadata)
# Use new title instead of project_name and highlight query if present
display_title = highlight_query(metadata["title"], var) if var.strip() else metadata["title"]
proj_id = metadata.get('id', 'Unknown')
st.markdown(f"#### {display_title} [{proj_id}]")
# Build snippet with potential highlighting
objectives = metadata.get("objectives", "")
desc_de = metadata.get("description.de", "")
desc_en = metadata.get("description.en", "")
description = desc_de if desc_de else desc_en
full_snippet = f"Objective: {objectives} Description: {description}"
words = full_snippet.split()
preview_word_count = 200
preview_text = " ".join(words[:preview_word_count])
remainder_text = " ".join(words[preview_word_count:])
preview_text = highlight_query(preview_text, var) if var.strip() else preview_text
st.write(preview_text)
if remainder_text:
with st.expander("Show more"):
st.write(remainder_text)
# Keywords
full_text = res.payload['page_content']
top_keywords = extract_top_keywords(full_text, top_n=5)
if top_keywords:
st.markdown(f"_{' · '.join(top_keywords)}_")
# Country info
try:
c_list = json.loads(metadata.get('countries', "[]").replace("'", '"'))
except json.JSONDecodeError:
c_list = []
matched_countries = []
for code in c_list:
if len(code) == 2:
resolved_name = get_country_name(code.upper(), region_df)
if resolved_name.upper() != code.upper():
matched_countries.append(resolved_name)
additional_text = f"Country: **{', '.join(matched_countries) if matched_countries else 'Unknown'}**"
# Add contact info if available and not [email protected]
contact = metadata.get("contact", "").strip()
if contact and contact.lower() != "[email protected]":
additional_text += f" | Contact: **{contact}**"
st.markdown(additional_text)
st.divider()
###############################
# Display Semantic Results Branch
###############################
else:
st.write(f"Showing **Top 15 Semantic Search results** for query: {var}")
if not filtered_semantic_no_dupe:
st.write("No relevant results found.")
else:
top_results = filtered_semantic_no_dupe[:5]
rag_answer = get_rag_answer(var, top_results)
st.markdown("### Generated Answer")
st.write(rag_answer)
st.divider()
for res in top_results:
metadata = res.payload.get('metadata', {})
if "title" not in metadata:
metadata["title"] = compute_title(metadata)
display_title = metadata["title"]
st.markdown(f"#### {display_title} [{metadata.get('id', 'Unknown')}]")
objectives = metadata.get("objectives", "")
desc_de = metadata.get("description.de", "")
desc_en = metadata.get("description.en", "")
description = desc_de if desc_de else desc_en
full_snippet = f"Objective: {objectives} Description: {description}"
words = full_snippet.split()
preview_word_count = 200
preview_text = " ".join(words[:preview_word_count])
remainder_text = " ".join(words[preview_word_count:])
st.write(preview_text)
if remainder_text:
with st.expander("Show more"):
st.write(remainder_text)
top_keywords = extract_top_keywords(res.payload['page_content'], top_n=5)
if top_keywords:
st.markdown(f"_{' · '.join(top_keywords)}_")
try:
c_list = json.loads(metadata.get('countries', "[]").replace("'", '"'))
except json.JSONDecodeError:
c_list = []
matched_countries = []
for code in c_list:
if len(code) == 2:
resolved_name = get_country_name(code.upper(), region_df)
if resolved_name.upper() != code.upper():
matched_countries.append(resolved_name)
additional_text = f"Country: **{', '.join(matched_countries) if matched_countries else 'Unknown'}**"
contact = metadata.get("contact", "").strip()
if contact and contact.lower() != "[email protected]":
additional_text += f" | Contact: **{contact}**"
st.markdown(additional_text)
st.divider()
# for i in results:
# st.subheader(str(i.metadata['id'])+":"+str(i.metadata['title_main']))
# st.caption(f"Status:{str(i.metadata['status'])}, Country:{str(i.metadata['country_name'])}")
# st.write(i.page_content)
# st.divider() |