Spaces:
Sleeping
Sleeping
File size: 12,239 Bytes
0130713 c2f0c5c c258cbb 5a1352d c567921 8fdd4c1 8225c93 cb359de 9d9ace2 53d69f4 755183b f5dac9b 0130713 755183b 3346614 d845358 e4b8dd5 88e2023 9392032 755183b c567921 755183b 5170600 9392032 5a1352d d845358 48484fb 8fdd4c1 17d08d8 d845358 8fdd4c1 d845358 5616c02 d845358 8fdd4c1 043c4b1 d845358 8fdd4c1 043c4b1 8fdd4c1 043c4b1 8fdd4c1 043c4b1 8fdd4c1 043c4b1 8fdd4c1 d845358 8fdd4c1 88e2023 8fdd4c1 17d08d8 d845358 5620c68 d845358 6c2d0be d845358 755183b 6c2d0be 755183b 6c2d0be d845358 755183b 6c2d0be 755183b aae060b d845358 755183b 59e8a6b e90b042 59e8a6b 8fdd4c1 59e8a6b 8fdd4c1 59e8a6b d9b0f82 755183b d6bab54 755183b d6bab54 755183b 221e09e d6bab54 755183b d6bab54 755183b d6bab54 755183b d6bab54 755183b d6bab54 755183b d6bab54 755183b 82254d1 d6bab54 755183b d6bab54 755183b d6bab54 f2ef836 1f49406 d6bab54 bf862a6 755183b d6bab54 82254d1 d6bab54 529dce6 d6bab54 d845358 d6bab54 755183b d6bab54 755183b d6bab54 e62b5b9 1f49406 755183b c258cbb 755183b d6bab54 d845358 755183b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import streamlit as st
import pandas as pd
from appStore.prep_data import process_giz_worldwide, remove_duplicates, get_max_end_year, extract_year
from appStore.prep_utils import create_documents, get_client
from appStore.embed import hybrid_embed_chunks
from appStore.search import hybrid_search
from appStore.region_utils import load_region_data, get_country_name, get_regions
from appStore.tfidf_extraction import extract_top_keywords
from torch import cuda
import json
from datetime import datetime
# get the device to be used either gpu or cpu
device = 'cuda' if cuda.is_available() else 'cpu'
st.set_page_config(page_title="SEARCH IATI", layout='wide')
st.title("GIZ Project Database (PROTOTYPE)")
var = st.text_input("Enter Search Query")
# Load the region lookup CSV
region_lookup_path = "docStore/regions_lookup.csv"
region_df = load_region_data(region_lookup_path)
#################### Create the embeddings collection and save ######################
# Uncomment these lines to process and embed your data only once.
# chunks = process_giz_worldwide()
# temp_doc = create_documents(chunks, 'chunks')
collection_name = "giz_worldwide"
# hybrid_embed_chunks(docs=temp_doc, collection_name=collection_name, del_if_exists=True)
################### Hybrid Search ######################################################
client = get_client()
print(client.get_collections())
# Get the maximum end_year across the entire collection
max_end_year = get_max_end_year(client, collection_name)
# Get all unique sub-regions
_, unique_sub_regions = get_regions(region_df)
# Fetch unique country codes and map to country names
@st.cache_data
def get_country_name_and_region_mapping(_client, collection_name, region_df):
results = hybrid_search(_client, "", collection_name)
country_set = set()
for res in results[0] + results[1]:
countries = res.payload.get('metadata', {}).get('countries', "[]")
try:
country_list = json.loads(countries.replace("'", '"'))
# Only add codes of length 2
two_digit_codes = [code.upper() for code in country_list if len(code) == 2]
country_set.update(two_digit_codes)
except json.JSONDecodeError:
pass
# Create a mapping of {CountryName -> ISO2Code} and {ISO2Code -> SubRegion}
country_name_to_code = {}
iso_code_to_sub_region = {}
for code in country_set:
name = get_country_name(code, region_df)
sub_region_row = region_df[region_df['alpha-2'] == code]
sub_region = sub_region_row['sub-region'].values[0] if not sub_region_row.empty else "Not allocated"
country_name_to_code[name] = code
iso_code_to_sub_region[code] = sub_region
return country_name_to_code, iso_code_to_sub_region
# Get country name and region mappings
client = get_client()
country_name_mapping, iso_code_to_sub_region = get_country_name_and_region_mapping(client, collection_name, region_df)
unique_country_names = sorted(country_name_mapping.keys()) # List of country names
# Layout filters in columns
col1, col2, col3, col4 = st.columns([1, 1, 1, 4])
# Region filter
with col1:
region_filter = st.selectbox("Region", ["All/Not allocated"] + sorted(unique_sub_regions))
# Dynamically filter countries based on selected region
if region_filter == "All/Not allocated":
filtered_country_names = unique_country_names
else:
filtered_country_names = [
name for name, code in country_name_mapping.items() if iso_code_to_sub_region.get(code) == region_filter
]
# Country filter
with col2:
country_filter = st.selectbox("Country", ["All/Not allocated"] + filtered_country_names)
# ToDo: Add year filter later if needed (currently commented out)
# with col3:
# current_year = datetime.now().year
# default_start_year = current_year - 5
# end_year_range = st.slider(
# "Project End Year",
# min_value=2010,
# max_value=max_end_year,
# value=(default_start_year, max_end_year),
# )
# Checkbox to control whether to show only exact matches
show_exact_matches = st.checkbox("Show only exact matches", value=False)
def filter_results(results, country_filter, region_filter):
filtered = []
for r in results:
metadata = r.payload.get('metadata', {})
countries = metadata.get('countries', "[]")
year_str = metadata.get('end_year')
if year_str:
extracted = extract_year(year_str)
try:
end_year_val = int(extracted) if extracted != "Unknown" else 0
except ValueError:
end_year_val = 0
else:
end_year_val = 0
# Convert countries to a list
try:
c_list = json.loads(countries.replace("'", '"'))
c_list = [code.upper() for code in c_list if len(code) == 2]
except json.JSONDecodeError:
c_list = []
# Translate selected country name to iso2
selected_iso_code = country_name_mapping.get(country_filter, None)
# Check if any country in the metadata matches the selected region
if region_filter != "All/Not allocated":
countries_in_region = [code for code in c_list if iso_code_to_sub_region.get(code) == region_filter]
else:
countries_in_region = c_list
if (
(country_filter == "All/Not allocated" or selected_iso_code in c_list)
and (region_filter == "All/Not allocated" or countries_in_region)
):
filtered.append(r)
return filtered
# Run the search
results = hybrid_search(client, var, collection_name, limit=500)
semantic_all = results[0]
lexical_all = results[1]
# Filter out very short content
semantic_all = [r for r in semantic_all if len(r.payload["page_content"]) >= 5]
lexical_all = [r for r in lexical_all if len(r.payload["page_content"]) >= 5]
# Apply a threshold to SEMANTIC results (score >= 0.0)
semantic_thresholded = [r for r in semantic_all if r.score >= 0.0]
filtered_semantic = filter_results(semantic_thresholded, country_filter, region_filter)
filtered_lexical = filter_results(lexical_all, country_filter, region_filter)
filtered_semantic_no_dupe = remove_duplicates(filtered_semantic)
filtered_lexical_no_dupe = remove_duplicates(filtered_lexical)
# Define a helper function to format currency values
def format_currency(value):
try:
# Convert to float then int for formatting (assumes whole numbers)
return f"€{int(float(value)):,}"
except (ValueError, TypeError):
return value
# Display Results
if show_exact_matches:
st.write(f"Showing **Top 15 Lexical Search results** for query: {var}")
query_substring = var.strip().lower()
lexical_substring_filtered = []
for r in lexical_all:
if query_substring in r.payload["page_content"].lower():
lexical_substring_filtered.append(r)
filtered_lexical = filter_results(lexical_substring_filtered, country_filter, region_filter)
filtered_lexical_no_dupe = remove_duplicates(filtered_lexical)
if not filtered_lexical_no_dupe:
st.write('No exact matches, consider unchecking "Show only exact matches"')
else:
for res in filtered_lexical_no_dupe[:15]:
metadata = res.payload.get('metadata', {})
# Get title and id; do not format as a link.
project_name = metadata.get('project_name', 'Project Link')
proj_id = metadata.get('id', 'Unknown')
st.markdown(f"#### {project_name} [{proj_id}]")
# Build snippet from objectives and descriptions.
objectives = metadata.get("objectives", "")
desc_de = metadata.get("description.de", "")
desc_en = metadata.get("description.en", "")
description = desc_de if desc_de else desc_en
full_snippet = f"Objective: {objectives} Description: {description}"
preview_limit = 400 # preview limit in characters
preview_snippet = full_snippet if len(full_snippet) <= preview_limit else full_snippet[:preview_limit] + "..."
# Using HTML to add a tooltip with the full snippet text.
st.markdown(f'<span title="{full_snippet}">{preview_snippet}</span>', unsafe_allow_html=True)
# Keywords remain the same.
full_text = res.payload['page_content']
top_keywords = extract_top_keywords(full_text, top_n=5)
if top_keywords:
st.markdown(f"_{' · '.join(top_keywords)}_")
# Metadata: get client, duration and budget details.
client_name = metadata.get('client', 'Unknown Client')
start_year = metadata.get('start_year', None)
end_year = metadata.get('end_year', None)
total_volume = metadata.get('total_volume', "Unknown")
total_project = metadata.get('total_project', "Unknown")
start_year_str = f"{int(round(float(start_year)))}" if start_year else "Unknown"
end_year_str = f"{int(round(float(end_year)))}" if end_year else "Unknown"
formatted_project_budget = format_currency(total_project)
formatted_total_volume = format_currency(total_volume)
additional_text = (
f"Commissioned by **{client_name}**\n"
f"Projekt duration **{start_year_str}-{end_year_str}**\n"
f"Budget: Project: **{formatted_project_budget}**, total volume: **{formatted_total_volume}**"
)
st.markdown(additional_text)
st.divider()
else:
st.write(f"Showing **Top 15 Semantic Search results** for query: {var}")
if not filtered_semantic_no_dupe:
st.write("No relevant results found.")
else:
for res in filtered_semantic_no_dupe[:15]:
metadata = res.payload.get('metadata', {})
project_name = metadata.get('project_name', 'Project Link')
proj_id = metadata.get('id', 'Unknown')
st.markdown(f"#### {project_name} [{proj_id}]")
# Build snippet from objectives and descriptions.
objectives = metadata.get("objectives", "")
desc_de = metadata.get("description.de", "")
desc_en = metadata.get("description.en", "")
description = desc_de if desc_de else desc_en
full_snippet = f"Objective: {objectives} Description: {description}"
preview_limit = 400
preview_snippet = full_snippet if len(full_snippet) <= preview_limit else full_snippet[:preview_limit] + "..."
st.markdown(f'<span title="{full_snippet}">{preview_snippet}</span>', unsafe_allow_html=True)
# Keywords
full_text = res.payload['page_content']
top_keywords = extract_top_keywords(full_text, top_n=5)
if top_keywords:
st.markdown(f"_{' · '.join(top_keywords)}_")
client_name = metadata.get('client', 'Unknown Client')
start_year = metadata.get('start_year', None)
end_year = metadata.get('end_year', None)
total_volume = metadata.get('total_volume', "Unknown")
total_project = metadata.get('total_project', "Unknown")
start_year_str = extract_year(start_year) if start_year else "Unknown"
end_year_str = extract_year(end_year) if end_year else "Unknown"
formatted_project_budget = format_currency(total_project)
formatted_total_volume = format_currency(total_volume)
additional_text = (
f"Commissioned by **{client_name}**\n"
f"Projekt duration **{start_year_str}-{end_year_str}**\n"
f"Budget: Project: **{formatted_project_budget}**, total volume: **{formatted_total_volume}**"
)
st.markdown(additional_text)
st.divider()
# Uncomment the following lines if you need to debug by listing raw results.
# for i in results:
# st.subheader(str(i.metadata['id'])+":"+str(i.metadata['title_main']))
# st.caption(f"Status:{str(i.metadata['status'])}, Country:{str(i.metadata['country_name'])}")
# st.write(i.page_content)
# st.divider()
|