Spaces:
Running
on
T4
Running
on
T4
Create reader.py
Browse files- auditqa/reader.py +39 -0
auditqa/reader.py
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from huggingface_hub import InferenceClient
|
| 2 |
+
from auditqa.process_chunks import getconfig
|
| 3 |
+
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
| 4 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
| 5 |
+
from langchain_community.chat_models.huggingface import ChatHuggingFace
|
| 6 |
+
import os
|
| 7 |
+
from dotenv import load_dotenv
|
| 8 |
+
load_dotenv()
|
| 9 |
+
|
| 10 |
+
model_config = getconfig("model_params.cfg")
|
| 11 |
+
NVIDIA_SERVER = os.environ["NVIDIA_SERVERLESS"]
|
| 12 |
+
HF_token = os.environ["LLAMA_3_1"]
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def nvidia_client():
|
| 16 |
+
client = InferenceClient(
|
| 17 |
+
base_url=model_config.get('reader','NVIDIA_ENDPOINT'),
|
| 18 |
+
api_key=NVIDIA_SERVER)
|
| 19 |
+
|
| 20 |
+
return client
|
| 21 |
+
|
| 22 |
+
def dedicated_endpoint():
|
| 23 |
+
# Set up the streaming callback handler
|
| 24 |
+
callback = StreamingStdOutCallbackHandler()
|
| 25 |
+
|
| 26 |
+
# Initialize the HuggingFaceEndpoint with streaming enabled
|
| 27 |
+
llm_qa = HuggingFaceEndpoint(
|
| 28 |
+
endpoint_url=model_config.get('reader', 'DEDICATED_ENDPOINT'),
|
| 29 |
+
max_new_tokens=int(model_config.get('reader','MAX_TOKENS')),
|
| 30 |
+
repetition_penalty=1.03,
|
| 31 |
+
timeout=70,
|
| 32 |
+
huggingfacehub_api_token=HF_token,
|
| 33 |
+
streaming=True, # Enable streaming for real-time token generation
|
| 34 |
+
callbacks=[callback] # Add the streaming callback handler
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
# Create a ChatHuggingFace instance with the streaming-enabled endpoint
|
| 38 |
+
chat_model = ChatHuggingFace(llm=llm_qa)
|
| 39 |
+
return chat_model
|