File size: 17,839 Bytes
97ec5c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eef99be
 
 
97ec5c0
 
eef99be
 
97ec5c0
 
 
 
 
 
 
 
 
 
 
 
 
 
c610f88
97ec5c0
 
 
 
 
 
 
c610f88
97ec5c0
 
 
 
 
 
 
 
eef99be
97ec5c0
 
 
 
eef99be
97ec5c0
 
eef99be
97ec5c0
 
 
 
 
 
 
 
 
 
eef99be
97ec5c0
 
 
 
 
eef99be
97ec5c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eef99be
97ec5c0
 
 
 
 
 
 
 
 
 
 
eef99be
97ec5c0
 
 
 
 
 
 
 
 
 
eef99be
97ec5c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eef99be
97ec5c0
 
 
 
 
 
 
 
 
 
 
 
 
 
eef99be
97ec5c0
 
 
 
 
 
eef99be
97ec5c0
 
eef99be
97ec5c0
 
eef99be
97ec5c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a69cf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97ec5c0
 
 
 
 
 
 
 
 
 
 
 
eef99be
97ec5c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a69cf5
 
 
 
 
 
 
 
97ec5c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eef99be
97ec5c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eef99be
97ec5c0
eef99be
97ec5c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c610f88
97ec5c0
 
 
 
 
 
 
 
 
c610f88
97ec5c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eef99be
97ec5c0
eef99be
97ec5c0
 
eef99be
97ec5c0
 
 
 
 
 
 
 
 
 
 
 
 
eef99be
97ec5c0
 
eef99be
 
 
97ec5c0
 
 
eef99be
 
97ec5c0
 
 
 
 
 
eef99be
97ec5c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c610f88
97ec5c0
 
 
 
 
eef99be
c610f88
 
97ec5c0
 
 
 
 
eef99be
97ec5c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
# EUDR ORCHESTRATOR

import gradio as gr
from fastapi import FastAPI, UploadFile, File, Form
from langserve import add_routes
from langgraph.graph import StateGraph, START, END
from typing import Optional, Dict, Any, List
from typing_extensions import TypedDict
from pydantic import BaseModel
from gradio_client import Client, file
import uvicorn
import os
from datetime import datetime
import logging
from contextlib import asynccontextmanager
import threading
from langchain_core.runnables import RunnableLambda
import tempfile

from utils import getconfig

config = getconfig("params.cfg")
RETRIEVER = config.get("retriever", "RETRIEVER")
GENERATOR = config.get("generator", "GENERATOR")
INGESTOR = config.get("ingestor", "INGESTOR")
MAX_CONTEXT_CHARS = int(config.get("general", "MAX_CONTEXT_CHARS", fallback="8000"))

COLLECTION_NAME = config.get("retriever", "COLLECTION_NAME")

logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Models
class GraphState(TypedDict):
    query: str
    context: str
    ingestor_context: str
    result: str
    country: str
    file_content: Optional[bytes]
    filename: Optional[str]
    metadata: Optional[Dict[str, Any]]

class ChatFedInput(TypedDict, total=False):
    query: str
    country: Optional[str]
    session_id: Optional[str]
    user_id: Optional[str]
    file_content: Optional[bytes]
    filename: Optional[str]

class ChatFedOutput(TypedDict):
    result: str
    metadata: Dict[str, Any]

class ChatUIInput(BaseModel):
    text: str

# Module functions
def ingest_node(state: GraphState) -> GraphState:
    """Process file through ingestor if file is provided"""
    start_time = datetime.now()
    
    # If no file provided, skip this step
    if not state.get("file_content") or not state.get("filename"):
        logger.info("No file provided, skipping ingestion")
        return {"ingestor_context": "", "metadata": state.get("metadata", {})}
    
    logger.info(f"Ingesting file: {state['filename']}")
    
    try:
        client = Client(INGESTOR)
        
        # Create a temporary file to upload
        with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(state["filename"])[1]) as tmp_file:
            tmp_file.write(state["file_content"])
            tmp_file_path = tmp_file.name
        
        try:
            # Call the ingestor's ingest endpoint
            ingestor_context = client.predict(
                file(tmp_file_path),
                api_name="/ingest"
            )
            
            logger.info(f"Ingest result length: {len(ingestor_context) if ingestor_context else 0}")
            
            # Handle error cases
            if isinstance(ingestor_context, str) and ingestor_context.startswith("Error:"):
                raise Exception(ingestor_context)
            
        finally:
            # Clean up temporary file
            os.unlink(tmp_file_path)
        
        duration = (datetime.now() - start_time).total_seconds()
        metadata = state.get("metadata", {})
        metadata.update({
            "ingestion_duration": duration,
            "ingestor_context_length": len(ingestor_context) if ingestor_context else 0,
            "ingestion_success": True,
            "analysis_type": "whisp_geojson"
        })
        
        return {
            "ingestor_context": ingestor_context,
            "metadata": metadata
        }
        
    except Exception as e:
        duration = (datetime.now() - start_time).total_seconds()
        logger.error(f"Ingestion failed: {str(e)}")
        
        metadata = state.get("metadata", {})
        metadata.update({
            "ingestion_duration": duration,
            "ingestion_success": False,
            "ingestion_error": str(e)
        })
        return {"ingestor_context": "", "metadata": metadata}

def retrieve_node(state: GraphState) -> GraphState:
    start_time = datetime.now()
    logger.info(f"Retrieval: {state['query'][:50]}... Country: {state.get('country', 'All')}")
    
    try:
        client = Client(RETRIEVER)
        
        # Create metadata filter for country if specified
        country = state.get("country", "").strip()
        filter_metadata = {'country': country} if country else None
        
        context = client.predict(
            query=state["query"],
            collection_name=COLLECTION_NAME,  # Use hardcoded value instead of COLLECTION_NAME variable
            filter_metadata=filter_metadata,
            api_name="/retrieve"
        )
        
        duration = (datetime.now() - start_time).total_seconds()
        metadata = state.get("metadata", {})
        metadata.update({
            "retrieval_duration": duration,
            "context_length": len(context) if context else 0,
            "retrieval_success": True,
            "country_filter": state.get("country", "All")
        })
        
        return {"context": context, "metadata": metadata}
        
    except Exception as e:
        duration = (datetime.now() - start_time).total_seconds()
        logger.error(f"Retrieval failed: {str(e)}")
        
        metadata = state.get("metadata", {})
        metadata.update({
            "retrieval_duration": duration,
            "retrieval_success": False,
            "retrieval_error": str(e)
        })
        return {"context": "", "metadata": metadata}

def generate_node(state: GraphState) -> GraphState:
    start_time = datetime.now()
    logger.info(f"Generation: {state['query'][:50]}...")
    
    try:
        # Combine retriever context with ingestor context
        retrieved_context = state.get("context", "")
        ingestor_context = state.get("ingestor_context", "")
        
        # Limit context size to prevent token overflow
        combined_context = ""
        if ingestor_context and retrieved_context:
            # Prioritize ingestor context, truncate if needed
            ingestor_truncated = ingestor_context[:MAX_CONTEXT_CHARS//2] if len(ingestor_context) > MAX_CONTEXT_CHARS//2 else ingestor_context
            retrieved_truncated = retrieved_context[:MAX_CONTEXT_CHARS//2] if len(retrieved_context) > MAX_CONTEXT_CHARS//2 else retrieved_context
            combined_context = f"=== UPLOADED DOCUMENT CONTEXT ===\n{ingestor_truncated}\n\n=== RETRIEVED CONTEXT ===\n{retrieved_truncated}"
        elif ingestor_context:
            ingestor_truncated = ingestor_context[:MAX_CONTEXT_CHARS] if len(ingestor_context) > MAX_CONTEXT_CHARS else ingestor_context
            combined_context = f"=== UPLOADED DOCUMENT CONTEXT ===\n{ingestor_truncated}"
        elif retrieved_context:
            combined_context = retrieved_context[:MAX_CONTEXT_CHARS] if len(retrieved_context) > MAX_CONTEXT_CHARS else retrieved_context
        
        client = Client(GENERATOR)
        result = client.predict(
            query=state["query"],
            context=combined_context,
            api_name="/generate"
        )
        
        duration = (datetime.now() - start_time).total_seconds()
        metadata = state.get("metadata", {})
        metadata.update({
            "generation_duration": duration,
            "result_length": len(result) if result else 0,
            "combined_context_length": len(combined_context),
            "generation_success": True
        })
        
        return {"result": result, "metadata": metadata}
        
    except Exception as e:
        duration = (datetime.now() - start_time).total_seconds()
        logger.error(f"Generation failed: {str(e)}")
        
        metadata = state.get("metadata", {})
        metadata.update({
            "generation_duration": duration,
            "generation_success": False,
            "generation_error": str(e)
        })
        return {"result": f"Error: {str(e)}", "metadata": metadata}

def file_only_node(state: GraphState) -> GraphState:
    """Return ingestor result directly without calling generator"""
    logger.info("File-only processing: returning ingestor result directly")
    
    ingestor_context = state.get("ingestor_context", "")
    metadata = state.get("metadata", {})
    metadata.update({
        "processing_type": "file_only",
        "result_source": "ingestor"
    })
    
    return {
        "result": ingestor_context,
        "metadata": metadata
    }

# Create separate workflows for different processing types
def create_file_workflow():
    """Workflow for file uploads: ingest -> file_only (skip retrieve and generate)"""
    workflow = StateGraph(GraphState)
    workflow.add_node("ingest", ingest_node)
    workflow.add_node("file_only", file_only_node)
    workflow.add_edge(START, "ingest")
    workflow.add_edge("ingest", "file_only")
    workflow.add_edge("file_only", END)
    return workflow.compile()

def create_query_workflow():
    """Workflow for queries: retrieve -> generate (skip ingest)"""
    workflow = StateGraph(GraphState)
    workflow.add_node("retrieve", retrieve_node)
    workflow.add_node("generate", generate_node)
    workflow.add_edge(START, "retrieve")
    workflow.add_edge("retrieve", "generate")
    workflow.add_edge("generate", END)
    return workflow.compile()

# Compile workflows
file_workflow = create_file_workflow()
query_workflow = create_query_workflow()

def process_query_core(
    query: str,
    country: str = "",
    session_id: Optional[str] = None,
    user_id: Optional[str] = None,
    file_content: Optional[bytes] = None,
    filename: Optional[str] = None,
    return_metadata: bool = False
):
    start_time = datetime.now()
    if not session_id:
        session_id = f"session_{start_time.strftime('%Y%m%d_%H%M%S')}"
    
    try:
        initial_state = {
            "query": query,
            "context": "",
            "ingestor_context": "",
            "result": "",
            "country": country or "",
            "file_content": file_content,
            "filename": filename,
            "metadata": {
                "session_id": session_id,
                "user_id": user_id,
                "start_time": start_time.isoformat(),
                "has_geojson_attachment": file_content is not None,
                "country_filter": country or "All"
            }
        }
        
        # Choose workflow based on whether file is provided
        if file_content and filename:
            logger.info("File provided - using file workflow (ingest -> file_only)")
            final_state = file_workflow.invoke(initial_state)
        else:
            logger.info("No file provided - using query workflow (retrieve -> generate)")
            final_state = query_workflow.invoke(initial_state)
        
        total_duration = (datetime.now() - start_time).total_seconds()
        
        final_metadata = final_state.get("metadata", {})
        final_metadata.update({
            "total_duration": total_duration,
            "end_time": datetime.now().isoformat(),
            "pipeline_success": True
        })
        
        if return_metadata:
            return {"result": final_state["result"], "metadata": final_metadata}
        else:
            return final_state["result"]
        
    except Exception as e:
        total_duration = (datetime.now() - start_time).total_seconds()
        logger.error(f"Pipeline failed: {str(e)}")
        
        if return_metadata:
            error_metadata = {
                "session_id": session_id,
                "total_duration": total_duration,
                "pipeline_success": False,
                "error": str(e)
            }
            return {"result": f"Error: {str(e)}", "metadata": error_metadata}
        else:
            return f"Error: {str(e)}"

def process_query_gradio(query: str, file_upload, country: str = "") -> str:
    """Gradio interface function with GeoJSON file upload support"""
    file_content = None
    filename = None
    
    if file_upload is not None:
        try:
            with open(file_upload.name, 'rb') as f:
                file_content = f.read()
            filename = os.path.basename(file_upload.name)
            logger.info(f"File uploaded: {filename}, size: {len(file_content)} bytes")
        except Exception as e:
            logger.error(f"Error reading uploaded file: {str(e)}")
            return f"Error reading file: {str(e)}"
    
    return process_query_core(
        query=query,
        country=country,
        file_content=file_content,
        filename=filename,
        session_id=f"gradio_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
        return_metadata=False
    )

def chatui_adapter(data) -> str:
    try:
        if hasattr(data, 'text'):
            text = data.text
        elif isinstance(data, dict) and 'text' in data:
            text = data['text']
        else:
            logger.error(f"Unexpected input structure: {data}")
            return "Error: Invalid input format. Expected 'text' field."
        
        result = process_query_core(
            query=text,
            session_id=f"chatui_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
            return_metadata=False
        )
        return result
    except Exception as e:
        logger.error(f"ChatUI error: {str(e)}")
        return f"Error: {str(e)}"

def process_query_langserve(input_data: ChatFedInput) -> ChatFedOutput:
    result = process_query_core(
        query=input_data["query"],
        country=input_data.get("country", ""),
        session_id=input_data.get("session_id"),
        user_id=input_data.get("user_id"),
        file_content=input_data.get("file_content"),
        filename=input_data.get("filename"),
        return_metadata=True
    )
    return ChatFedOutput(result=result["result"], metadata=result["metadata"])

def create_gradio_interface():
    with gr.Blocks(title="EUDR Orchestrator") as demo:
        gr.Markdown("# EUDR Orchestrator")
        gr.Markdown("Upload GeoJSON files for WHISP API analysis alongside EUDR compliance queries. MCP endpoints available at `/gradio_api/mcp/sse`")
        
        with gr.Row():
            with gr.Column():
                query_input = gr.Textbox(
                    label="Query", 
                    lines=2, 
                    placeholder="Ask about EUDR compliance or upload GeoJSON for deforestation analysis...",
                    info="Enter your EUDR-related question"
                )
                file_input = gr.File(
                    label="Upload GeoJSON", 
                    file_types=[".geojson", ".json"],
                    info="Upload GeoJSON file for geographic deforestation analysis"
                )
                country_input = gr.Dropdown(
                    choices=["", "Ecuador", "Guatemala"],
                    label="Country Filter (Optional)",
                    value="",
                    info="Filter EUDR document retrieval by country"
                )
                
                submit_btn = gr.Button("Submit", variant="primary")
            
            with gr.Column():
                output = gr.Textbox(label="Response", lines=15, show_copy_button=True)
        
        submit_btn.click(
            fn=process_query_gradio,
            inputs=[query_input, file_input, country_input],
            outputs=output
        )
    
    return demo

@asynccontextmanager
async def lifespan(app: FastAPI):
    logger.info("ChatFed Orchestrator starting up...")
    yield
    logger.info("Orchestrator shutting down...")

app = FastAPI(
    title="ChatFed Orchestrator",
    version="1.0.0",
    lifespan=lifespan,
    docs_url=None,
    redoc_url=None
)

@app.get("/health")
async def health_check():
    return {"status": "healthy"}

@app.get("/")
async def root():
    return {
        "message": "ChatFed Orchestrator API",
        "endpoints": {
            "health": "/health",
            "chatfed": "/chatfed",
            "chatfed-ui-stream": "/chatfed-ui-stream",
            "chatfed-with-file": "/chatfed-with-file"
        }
    }

@app.post("/chatfed-with-file")
async def chatfed_with_file(
    query: str = Form(...),
    file: Optional[UploadFile] = File(None),
    country: Optional[str] = Form(""),
    session_id: Optional[str] = Form(None),
    user_id: Optional[str] = Form(None)
):
    """Endpoint for queries with optional file attachments"""
    file_content = None
    filename = None
    
    if file:
        file_content = await file.read()
        filename = file.filename
    
    result = process_query_core(
        query=query,
        country=country,
        file_content=file_content,
        filename=filename,
        session_id=session_id,
        user_id=user_id,
        return_metadata=True
    )
    
    return ChatFedOutput(result=result["result"], metadata=result["metadata"])

# LangServe routes
add_routes(
    app,
    RunnableLambda(process_query_langserve),
    path="/chatfed",
    input_type=ChatFedInput,
    output_type=ChatFedOutput
)

add_routes(
    app,
    RunnableLambda(chatui_adapter),
    path="/chatfed-ui-stream",
    input_type=ChatUIInput,
    output_type=str,
    enable_feedback_endpoint=True,
    enable_public_trace_link_endpoint=True,
)

def run_gradio_server():
    demo = create_gradio_interface()
    demo.launch(
        server_name="0.0.0.0",
        server_port=7861,
        mcp_server=True,   
        show_error=True,
        share=False,
        quiet=True
    )

if __name__ == "__main__":
    gradio_thread = threading.Thread(target=run_gradio_server, daemon=True)
    gradio_thread.start()
    logger.info("Gradio MCP server started on port 7861")
    
    host = os.getenv("HOST", "0.0.0.0")
    port = int(os.getenv("PORT", "7860"))
    
    logger.info(f"Starting FastAPI server on {host}:{port}")
    
    uvicorn.run(app, host=host, port=port, log_level="info", access_log=True)