Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
from transformers import RagRetriever, RagTokenizer, RagSequenceForGeneration
|
4 |
+
import os
|
5 |
+
|
6 |
+
# 从环境变量加载模型
|
7 |
+
MODEL_NAME = os.getenv("MODEL_NAME", "facebook/rag-sequence-nq")
|
8 |
+
retriever = RagRetriever.from_pretrained(MODEL_NAME, index_name="custom")
|
9 |
+
tokenizer = RagTokenizer.from_pretrained(MODEL_NAME)
|
10 |
+
model = RagSequenceForGeneration.from_pretrained(MODEL_NAME, retriever=retriever)
|
11 |
+
|
12 |
+
def predict(vector):
|
13 |
+
"""处理向量输入并返回答案"""
|
14 |
+
try:
|
15 |
+
# 将向量转换为适合检索的格式
|
16 |
+
vector = np.array(vector).reshape(1, -1)
|
17 |
+
|
18 |
+
# 使用 RAG 进行检索和生成
|
19 |
+
input_dict = tokenizer.prepare_seq2seq_batch(
|
20 |
+
"",
|
21 |
+
return_tensors="pt"
|
22 |
+
)
|
23 |
+
input_dict["input_ids"] = None # 使用向量而非文本
|
24 |
+
input_dict["external_vector"] = vector # 传递自定义向量
|
25 |
+
|
26 |
+
# 生成答案
|
27 |
+
outputs = model.generate(
|
28 |
+
input_ids=input_dict["input_ids"],
|
29 |
+
external_vector=input_dict["external_vector"],
|
30 |
+
max_length=200
|
31 |
+
)
|
32 |
+
|
33 |
+
# 解码结果
|
34 |
+
answer = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
35 |
+
return answer
|
36 |
+
|
37 |
+
except Exception as e:
|
38 |
+
return f"处理错误: {str(e)}"
|
39 |
+
|
40 |
+
# 创建 Gradio 接口
|
41 |
+
iface = gr.Interface(
|
42 |
+
fn=predict,
|
43 |
+
inputs=gr.Dataframe(headers=["vector"], type="array"), # 接收向量输入
|
44 |
+
outputs="text",
|
45 |
+
title="电商智能客服",
|
46 |
+
description="输入商品/订单向量获取智能回答"
|
47 |
+
)
|
48 |
+
|
49 |
+
# 启动应用
|
50 |
+
iface.launch(server_name="0.0.0.0", server_port=7860)
|