# -*- coding: utf-8 -*- """app.ipynb Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1XblbxoRxB4XOHixjGij789FPD9KjKdhi """ import os import pdfplumber import gradio as gr from langchain_groq.chat_models import ChatGroq # Set Groq API key securely GROQ_API_KEY = os.getenv("GROQ_API_KEY") # Fetch from environment variables if not GROQ_API_KEY: raise ValueError("GROQ_API_KEY is not set. Add it in Hugging Face Secrets.") # Initialize LLM llm = ChatGroq(model_name="llama-3.3-70b-versatile") def extract_text_from_pdf(pdf_file): """Extracts clean text from a text-based PDF while handling edge cases.""" text = "" try: with pdfplumber.open(pdf_file) as pdf: for page in pdf.pages: page_text = page.extract_text() if page_text: text += page_text.strip() + "\n\n" # Keep formatting clean except Exception as e: return f"Error extracting text: {str(e)}" if not text.strip(): return "⚠️ No readable text found. This might be a scanned or image-based PDF." return text.strip() def summarize_text(text, length, style): """Summarizes extracted text with structured formatting.""" prompt = ( f""" Read the following document and summarize it in {style.lower()} format. Keep the summary {length.lower()}. Follow this structured reasoning: 1. Identify key sections & main topics. 2. Extract essential points from each section. 3. Remove redundant information. 4. Ensure accuracy without hallucination. Document: {text[:10000]} # Limit input to 10,000 characters for efficiency """ ) response = llm.predict(prompt) return response.strip() def process_pdf(file, length, style): """Extracts text and summarizes PDF with customization options.""" if not file: return "⚠️ No file uploaded. Please upload a PDF." text = extract_text_from_pdf(file.name) if text.startswith("⚠️") or text.startswith("Error"): return text # Return error messages directly return summarize_text(text, length, style) # Create Gradio Interface interface = gr.Interface( fn=process_pdf, inputs=[ gr.File(label="📄 Upload a PDF"), gr.Radio(["Short", "Medium", "Long"], label="📏 Summary Length", value="Medium"), gr.Radio(["Bullets", "Key Takeaways", "Concise Paragraph"], label="📌 Summary Style", value="Key Takeaways"), ], outputs="text", title="📄 Insurance Policy Document Summarizer", description="Upload a policy and get summary.", ) # Run the app interface.launch()