Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import json | |
import tempfile | |
import os | |
from typing import List, Optional, Literal | |
from PIL import Image | |
import spaces | |
from pathlib import Path | |
from htrflow.volume.volume import Collection | |
from htrflow.pipeline.pipeline import Pipeline | |
DEFAULT_OUTPUT = "alto" | |
CHOICES = ["txt", "alto", "page", "json"] | |
PIPELINE_CONFIGS = { | |
"letter_english": { | |
"steps": [ | |
{ | |
"step": "Segmentation", | |
"settings": { | |
"model": "yolo", | |
"model_settings": {"model": "Riksarkivet/yolov9-lines-within-regions-1"}, | |
"generation_settings": {"batch_size": 8}, | |
}, | |
}, | |
{ | |
"step": "TextRecognition", | |
"settings": { | |
"model": "TrOCR", | |
"model_settings": {"model": "microsoft/trocr-base-handwritten"}, | |
"generation_settings": {"batch_size": 16}, | |
}, | |
}, | |
{"step": "OrderLines"}, | |
] | |
}, | |
"letter_swedish": { | |
"steps": [ | |
{ | |
"step": "Segmentation", | |
"settings": { | |
"model": "yolo", | |
"model_settings": {"model": "Riksarkivet/yolov9-lines-within-regions-1"}, | |
"generation_settings": {"batch_size": 8}, | |
}, | |
}, | |
{ | |
"step": "TextRecognition", | |
"settings": { | |
"model": "TrOCR", | |
"model_settings": {"model": "Riksarkivet/trocr-base-handwritten-hist-swe-2"}, | |
"generation_settings": {"batch_size": 16}, | |
}, | |
}, | |
{"step": "OrderLines"}, | |
] | |
}, | |
"spread_english": { | |
"steps": [ | |
{ | |
"step": "Segmentation", | |
"settings": { | |
"model": "yolo", | |
"model_settings": {"model": "Riksarkivet/yolov9-regions-1"}, | |
"generation_settings": {"batch_size": 4}, | |
}, | |
}, | |
{ | |
"step": "Segmentation", | |
"settings": { | |
"model": "yolo", | |
"model_settings": {"model": "Riksarkivet/yolov9-lines-within-regions-1"}, | |
"generation_settings": {"batch_size": 8}, | |
}, | |
}, | |
{ | |
"step": "TextRecognition", | |
"settings": { | |
"model": "TrOCR", | |
"model_settings": {"model": "microsoft/trocr-base-handwritten"}, | |
"generation_settings": {"batch_size": 16}, | |
}, | |
}, | |
{"step": "ReadingOrderMarginalia", "settings": {"two_page": True}}, | |
] | |
}, | |
"spread_swedish": { | |
"steps": [ | |
{ | |
"step": "Segmentation", | |
"settings": { | |
"model": "yolo", | |
"model_settings": {"model": "Riksarkivet/yolov9-regions-1"}, | |
"generation_settings": {"batch_size": 4}, | |
}, | |
}, | |
{ | |
"step": "Segmentation", | |
"settings": { | |
"model": "yolo", | |
"model_settings": {"model": "Riksarkivet/yolov9-lines-within-regions-1"}, | |
"generation_settings": {"batch_size": 8}, | |
}, | |
}, | |
{ | |
"step": "TextRecognition", | |
"settings": { | |
"model": "TrOCR", | |
"model_settings": {"model": "Riksarkivet/trocr-base-handwritten-hist-swe-2"}, | |
"generation_settings": {"batch_size": 16}, | |
}, | |
}, | |
{"step": "ReadingOrderMarginalia", "settings": {"two_page": True}}, | |
] | |
}, | |
} | |
def process_htr(image_path: str, document_type: Literal["letter_english", "letter_swedish", "spread_english", "spread_swedish"] = "letter_swedish", output_format: Literal["txt", "alto", "page", "json"] = DEFAULT_OUTPUT, custom_settings: Optional[str] = None) -> str: | |
""" | |
Process handwritten text recognition and return extracted text with specified format file. | |
Args: | |
image_path (str): Path to the image file to process | |
document_type (str): Type of document processing template to use | |
output_format (str): Output format for the processed file | |
custom_settings (str): Optional custom pipeline settings as JSON | |
Returns: | |
str: The path to the output file or error message | |
""" | |
if not image_path: | |
return "Error: No image provided" | |
try: | |
original_filename = Path(image_path).stem or "output" | |
if custom_settings: | |
try: | |
config = json.loads(custom_settings) | |
except json.JSONDecodeError: | |
return "Error: Invalid JSON in custom_settings parameter" | |
else: | |
config = PIPELINE_CONFIGS[document_type] | |
collection = Collection([image_path]) | |
pipeline = Pipeline.from_config(config) | |
try: | |
processed_collection = pipeline.run(collection) | |
except Exception as pipeline_error: | |
return f"Error: Pipeline execution failed: {str(pipeline_error)}" | |
temp_dir = Path(tempfile.mkdtemp()) | |
export_dir = temp_dir / output_format | |
processed_collection.save(directory=str(export_dir), serializer=output_format) | |
output_file_path = None | |
for root, _, files in os.walk(export_dir): | |
for file in files: | |
old_path = os.path.join(root, file) | |
file_ext = Path(file).suffix | |
new_filename = f"{original_filename}.{output_format}" if not file_ext else f"{original_filename}{file_ext}" | |
new_path = os.path.join(root, new_filename) | |
os.rename(old_path, new_path) | |
output_file_path = new_path | |
break | |
if output_file_path and os.path.exists(output_file_path): | |
return output_file_path | |
else: | |
return "Error: Failed to generate output file" | |
except Exception as e: | |
return f"Error: HTR processing failed: {str(e)}" | |
def extract_text_from_collection(collection: Collection) -> str: | |
text_lines = [] | |
for page in collection.pages: | |
for node in page.traverse(): | |
if hasattr(node, "text") and node.text: | |
text_lines.append(node.text) | |
return "\n".join(text_lines) | |
def create_htrflow_mcp_server(): | |
demo = gr.Interface( | |
fn=process_htr, | |
inputs=[ | |
gr.Image(type="filepath", label="Upload Image or Enter URL"), | |
gr.Dropdown(choices=["letter_english", "letter_swedish", "spread_english", "spread_swedish"], value="letter_swedish", label="Document Type"), | |
gr.Dropdown(choices=CHOICES, value=DEFAULT_OUTPUT, label="Output Format"), | |
gr.Textbox(label="Custom Settings (JSON)", placeholder="Optional custom pipeline settings", value=""), | |
], | |
outputs=gr.File(label="Download Output File"), | |
title="HTRflow MCP Server", | |
description="Process handwritten text from uploaded file or URL and get output file in specified format", | |
api_name="process_htr", | |
) | |
return demo | |
if __name__ == "__main__": | |
demo = create_htrflow_mcp_server() | |
demo.launch(mcp_server=True, share=False, debug=True) |