Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import json | |
import tempfile | |
import os | |
from typing import List, Optional, Literal, Tuple | |
from PIL import Image | |
import spaces | |
from pathlib import Path | |
from htrflow.volume.volume import Collection | |
from htrflow.pipeline.pipeline import Pipeline | |
DEFAULT_OUTPUT = "alto" | |
FORMAT_CHOICES = ["letter_english", "letter_swedish", "spread_english", "spread_swedish"] | |
FILE_CHOICES = ["txt", "alto", "page", "json"] | |
FormatChoices = Literal["letter_english", "letter_swedish", "spread_english", "spread_swedish"] | |
FileChoices = Literal["txt", "alto", "page", "json"] | |
PIPELINE_CONFIGS = { | |
"letter_english": { | |
"steps": [ | |
{ | |
"step": "Segmentation", | |
"settings": { | |
"model": "yolo", | |
"model_settings": {"model": "Riksarkivet/yolov9-lines-within-regions-1"}, | |
"generation_settings": {"batch_size": 8}, | |
}, | |
}, | |
{ | |
"step": "TextRecognition", | |
"settings": { | |
"model": "TrOCR", | |
"model_settings": {"model": "microsoft/trocr-base-handwritten"}, | |
"generation_settings": {"batch_size": 16}, | |
}, | |
}, | |
{"step": "OrderLines"}, | |
] | |
}, | |
"letter_swedish": { | |
"steps": [ | |
{ | |
"step": "Segmentation", | |
"settings": { | |
"model": "yolo", | |
"model_settings": {"model": "Riksarkivet/yolov9-lines-within-regions-1"}, | |
"generation_settings": {"batch_size": 8}, | |
}, | |
}, | |
{ | |
"step": "TextRecognition", | |
"settings": { | |
"model": "TrOCR", | |
"model_settings": {"model": "Riksarkivet/trocr-base-handwritten-hist-swe-2"}, | |
"generation_settings": {"batch_size": 16}, | |
}, | |
}, | |
{"step": "OrderLines"}, | |
] | |
}, | |
"spread_english": { | |
"steps": [ | |
{ | |
"step": "Segmentation", | |
"settings": { | |
"model": "yolo", | |
"model_settings": {"model": "Riksarkivet/yolov9-regions-1"}, | |
"generation_settings": {"batch_size": 4}, | |
}, | |
}, | |
{ | |
"step": "Segmentation", | |
"settings": { | |
"model": "yolo", | |
"model_settings": {"model": "Riksarkivet/yolov9-lines-within-regions-1"}, | |
"generation_settings": {"batch_size": 8}, | |
}, | |
}, | |
{ | |
"step": "TextRecognition", | |
"settings": { | |
"model": "TrOCR", | |
"model_settings": {"model": "microsoft/trocr-base-handwritten"}, | |
"generation_settings": {"batch_size": 16}, | |
}, | |
}, | |
{"step": "ReadingOrderMarginalia", "settings": {"two_page": True}}, | |
] | |
}, | |
"spread_swedish": { | |
"steps": [ | |
{ | |
"step": "Segmentation", | |
"settings": { | |
"model": "yolo", | |
"model_settings": {"model": "Riksarkivet/yolov9-regions-1"}, | |
"generation_settings": {"batch_size": 4}, | |
}, | |
}, | |
{ | |
"step": "Segmentation", | |
"settings": { | |
"model": "yolo", | |
"model_settings": {"model": "Riksarkivet/yolov9-lines-within-regions-1"}, | |
"generation_settings": {"batch_size": 8}, | |
}, | |
}, | |
{ | |
"step": "TextRecognition", | |
"settings": { | |
"model": "TrOCR", | |
"model_settings": {"model": "Riksarkivet/trocr-base-handwritten-hist-swe-2"}, | |
"generation_settings": {"batch_size": 16}, | |
}, | |
}, | |
{"step": "ReadingOrderMarginalia", "settings": {"two_page": True}}, | |
] | |
}, | |
} | |
def _process_htr_pipeline(image_path: str, document_type: FormatChoices, custom_settings: Optional[str] = None) -> Collection: | |
"""Process HTR pipeline and return the processed collection.""" | |
if not image_path: | |
raise ValueError("No image provided") | |
if custom_settings: | |
try: | |
config = json.loads(custom_settings) | |
except json.JSONDecodeError: | |
raise ValueError("Invalid JSON in custom_settings parameter") | |
else: | |
config = PIPELINE_CONFIGS[document_type] | |
collection = Collection([image_path]) | |
pipeline = Pipeline.from_config(config) | |
try: | |
processed_collection = pipeline.run(collection) | |
return processed_collection | |
except Exception as pipeline_error: | |
raise RuntimeError(f"Pipeline execution failed: {str(pipeline_error)}") | |
def htr_text(image_path: str, document_type: FormatChoices = "letter_swedish", custom_settings: Optional[str] = None) -> str: | |
"""Extract text from handwritten documents using HTR.""" | |
try: | |
processed_collection = _process_htr_pipeline(image_path, document_type, custom_settings) | |
extracted_text = extract_text_from_collection(processed_collection) | |
return extracted_text | |
except Exception as e: | |
return f"HTR text extraction failed: {str(e)}" | |
def htrflow_file(image_path: str, document_type: FormatChoices = "letter_swedish", output_format: FileChoices = DEFAULT_OUTPUT, custom_settings: Optional[str] = None, server_name: str = "https://gabriel-htrflow-mcp.hf.space") -> str: | |
""" | |
Process HTR and return a formatted file for download. | |
Returns: | |
str: File path for direct download via gr.File (server_name/gradio_api/file=/tmp/gradio/{temp_folder}/{file_name}) | |
""" | |
try: | |
original_filename = Path(image_path).stem or "output" | |
processed_collection = _process_htr_pipeline(image_path, document_type, custom_settings) | |
temp_dir = Path(tempfile.mkdtemp()) | |
export_dir = temp_dir / output_format | |
processed_collection.save(directory=str(export_dir), serializer=output_format) | |
output_file_path = None | |
for root, _, files in os.walk(export_dir): | |
for file in files: | |
old_path = os.path.join(root, file) | |
file_ext = Path(file).suffix | |
new_filename = f"{original_filename}.{output_format}" if not file_ext else f"{original_filename}{file_ext}" | |
new_path = os.path.join(root, new_filename) | |
os.rename(old_path, new_path) | |
output_file_path = new_path | |
break | |
if output_file_path and os.path.exists(output_file_path): | |
return output_file_path | |
else: | |
return None | |
except Exception as e: | |
return None | |
def htrflow_visualizer(image: str, htr_document: str) -> str: | |
pass | |
def extract_text_from_collection(collection: Collection) -> str: | |
text_lines = [] | |
for page in collection.pages: | |
for node in page.traverse(): | |
if hasattr(node, "text") and node.text: | |
text_lines.append(node.text) | |
return "\n".join(text_lines) | |
def create_htrflow_mcp_server(): | |
htr_text_interface = gr.Interface( | |
fn=htr_text, | |
inputs=[ | |
gr.Image(type="filepath", label="Upload Image or Enter URL"), | |
gr.Dropdown(choices=FORMAT_CHOICES, value="letter_swedish", label="Document Type"), | |
gr.Textbox(label="Custom Settings (JSON)", placeholder="Optional custom pipeline settings", value=""), | |
], | |
outputs=[ | |
gr.Textbox(label="Extracted Text", lines=10) | |
], | |
description="Extract plain text from handwritten documents using HTR", | |
api_name="htr_text", | |
) | |
htrflow_file_interface = gr.Interface( | |
fn=htrflow_file, | |
inputs=[ | |
gr.Image(type="filepath", label="Upload Image or Enter URL"), | |
gr.Dropdown(choices=FORMAT_CHOICES, value="letter_swedish", label="Document Type"), | |
gr.Dropdown(choices=FILE_CHOICES, value=DEFAULT_OUTPUT, label="Output Format"), | |
gr.Textbox(label="Custom Settings (JSON)", placeholder="Optional custom pipeline settings", value=""), | |
gr.Textbox(label="Server Name", value="https://gabriel-htrflow-mcp.hf.space", placeholder="Server URL for download links"), | |
], | |
outputs=[ | |
gr.File(label="Download HTR Output File") | |
], | |
description="Process handwritten text and get formatted file (ALTO XML, PAGE XML, JSON, or TXT)", | |
api_name="htrflow_file", | |
) | |
htrflow_viz = gr.Interface( | |
fn=htrflow_visualizer, | |
inputs=[ | |
gr.Image(type="filepath", label="Upload Image or Enter URL"), | |
gr.Textbox(label="HTR Document content", placeholder="Path to the HTR document file", value=""), | |
], | |
outputs=gr.File(label="Download Output File"), | |
description="Visualize document", | |
api_name="htrflow_visualizer" | |
) | |
demo = gr.TabbedInterface( | |
[htr_text_interface, htrflow_file_interface, htrflow_viz], | |
["HTR Text", "HTR File", "HTR Visualizer"], | |
title="HTRflow Handwritten Text Recognition", | |
) | |
return demo | |
if __name__ == "__main__": | |
demo = create_htrflow_mcp_server() | |
demo.launch(mcp_server=True, share=False, debug=False) |