Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -116,18 +116,44 @@ PIPELINE_CONFIGS = {
|
|
116 |
}
|
117 |
|
118 |
@spaces.GPU
|
119 |
-
def
|
120 |
"""
|
121 |
-
Process handwritten text recognition and return extracted text
|
|
|
|
|
|
|
|
|
122 |
|
123 |
Args:
|
124 |
-
image_path (str):
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
Returns:
|
130 |
-
str: The path to the output file
|
|
|
|
|
131 |
"""
|
132 |
if not image_path:
|
133 |
return "Error: No image provided"
|
@@ -184,7 +210,7 @@ def extract_text_from_collection(collection: Collection) -> str:
|
|
184 |
|
185 |
def create_htrflow_mcp_server():
|
186 |
demo = gr.Interface(
|
187 |
-
fn=
|
188 |
inputs=[
|
189 |
gr.Image(type="filepath", label="Upload Image or Enter URL"),
|
190 |
gr.Dropdown(choices=["letter_english", "letter_swedish", "spread_english", "spread_swedish"], value="letter_swedish", label="Document Type"),
|
@@ -194,10 +220,10 @@ def create_htrflow_mcp_server():
|
|
194 |
outputs=gr.File(label="Download Output File"),
|
195 |
title="HTRflow MCP Server",
|
196 |
description="Process handwritten text from uploaded file or URL and get output file in specified format",
|
197 |
-
api_name="
|
198 |
)
|
199 |
return demo
|
200 |
|
201 |
if __name__ == "__main__":
|
202 |
demo = create_htrflow_mcp_server()
|
203 |
-
demo.launch(mcp_server=True, share=False, debug=
|
|
|
116 |
}
|
117 |
|
118 |
@spaces.GPU
|
119 |
+
def htrflow_htr(image_path: str, document_type: Literal["letter_english", "letter_swedish", "spread_english", "spread_swedish"] = "letter_swedish", output_format: Literal["txt", "alto", "page", "json"] = DEFAULT_OUTPUT, custom_settings: Optional[str] = None) -> str:
|
120 |
"""
|
121 |
+
Process handwritten text recognition (HTR) on uploaded images and return extracted text in the specified format.
|
122 |
+
|
123 |
+
This function uses machine learning models to automatically detect, segment, and transcribe handwritten text
|
124 |
+
from historical documents. It supports different document types and languages, with specialized models
|
125 |
+
trained on historical handwriting from the Swedish National Archives (Riksarkivet).
|
126 |
|
127 |
Args:
|
128 |
+
image_path (str): The file path or URL to the image containing handwritten text to be processed.
|
129 |
+
Supports common image formats like JPG, PNG, TIFF.
|
130 |
+
|
131 |
+
document_type (Literal): The type of document and language processing template to use.
|
132 |
+
Available options:
|
133 |
+
- "letter_english": Single-page English handwritten letters (default: "letter_swedish")
|
134 |
+
- "letter_swedish": Single-page Swedish handwritten letters
|
135 |
+
- "spread_english": Two-page spread English documents with marginalia
|
136 |
+
- "spread_swedish": Two-page spread Swedish documents with marginalia
|
137 |
+
Default: "letter_swedish"
|
138 |
+
|
139 |
+
output_format (Literal): The format for the output file containing the transcribed text.
|
140 |
+
Available options:
|
141 |
+
- "txt": Plain text format with line breaks
|
142 |
+
- "alto": ALTO XML format with detailed layout and coordinate information
|
143 |
+
- "page": PAGE XML format with structural markup and positioning data
|
144 |
+
- "json": JSON format with structured text, layout information and metadata
|
145 |
+
Default: "alto"
|
146 |
+
Note: Both "alto" and "page" formats are XML-based with layout information.
|
147 |
+
|
148 |
+
custom_settings (Optional[str]): Advanced users can provide custom pipeline configuration as a
|
149 |
+
JSON string to override the default processing steps. This allows
|
150 |
+
fine-tuning of model parameters, batch sizes, and processing workflow.
|
151 |
+
Default: None (uses predefined configuration for document_type)
|
152 |
|
153 |
Returns:
|
154 |
+
str: The file path to the generated output file containing the transcribed text in the requested format,
|
155 |
+
or an error message if processing fails. The output file will be named based on the original
|
156 |
+
image filename with the appropriate extension (.txt, .xml, or .json).
|
157 |
"""
|
158 |
if not image_path:
|
159 |
return "Error: No image provided"
|
|
|
210 |
|
211 |
def create_htrflow_mcp_server():
|
212 |
demo = gr.Interface(
|
213 |
+
fn=htrflow_htr,
|
214 |
inputs=[
|
215 |
gr.Image(type="filepath", label="Upload Image or Enter URL"),
|
216 |
gr.Dropdown(choices=["letter_english", "letter_swedish", "spread_english", "spread_swedish"], value="letter_swedish", label="Document Type"),
|
|
|
220 |
outputs=gr.File(label="Download Output File"),
|
221 |
title="HTRflow MCP Server",
|
222 |
description="Process handwritten text from uploaded file or URL and get output file in specified format",
|
223 |
+
api_name="htrflow_htr",
|
224 |
)
|
225 |
return demo
|
226 |
|
227 |
if __name__ == "__main__":
|
228 |
demo = create_htrflow_mcp_server()
|
229 |
+
demo.launch(mcp_server=True, share=False, debug=False)
|