File size: 11,516 Bytes
20ba813
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f408d30
20ba813
f408d30
 
 
 
 
 
 
 
 
 
 
 
 
20ba813
 
f408d30
 
 
20ba813
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f408d30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20ba813
 
f408d30
 
 
 
 
 
20ba813
 
 
f408d30
20ba813
 
f408d30
 
 
 
 
 
 
 
20ba813
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f408d30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20ba813
f408d30
20ba813
 
 
 
 
 
 
 
 
 
f408d30
20ba813
f408d30
20ba813
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f408d30
 
 
20ba813
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import asyncio
import os
import json
from typing import List, Dict, Any, Union
from contextlib import AsyncExitStack

import gradio as gr
from gradio.components.chatbot import ChatMessage
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
from anthropic import Anthropic

loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)

class MCPClientWrapper:
    def __init__(self):
        self.session = None
        self.exit_stack = None
        self.anthropic = None
        self.tools = []
        self.api_key = None
    
    def set_api_key(self, api_key: str) -> str:
        """Set the Anthropic API key and initialize the client"""
        if not api_key or not api_key.strip():
            return "❌ Please provide a valid Anthropic API key"
        
        try:
            self.api_key = api_key.strip()
            self.anthropic = Anthropic(api_key=self.api_key)
            return "βœ… Anthropic API key set successfully"
        except Exception as e:
            return f"❌ Error setting API key: {str(e)}"
    
    def connect(self, server_path: str) -> str:
        if not self.anthropic:
            return "❌ Please set your Anthropic API key first"
        
        return loop.run_until_complete(self._connect(server_path))
    
    async def _connect(self, server_path: str) -> str:
        if self.exit_stack:
            await self.exit_stack.aclose()
        
        self.exit_stack = AsyncExitStack()
        
        is_python = server_path.endswith('.py')
        command = "python" if is_python else "node"
        
        server_params = StdioServerParameters(
            command=command,
            args=[server_path],
            env={"PYTHONIOENCODING": "utf-8", "PYTHONUNBUFFERED": "1"}
        )
        
        try:
            stdio_transport = await self.exit_stack.enter_async_context(stdio_client(server_params))
            self.stdio, self.write = stdio_transport
            
            self.session = await self.exit_stack.enter_async_context(ClientSession(self.stdio, self.write))
            await self.session.initialize()
            
            response = await self.session.list_tools()
            self.tools = [{ 
                "name": tool.name,
                "description": tool.description,
                "input_schema": tool.inputSchema
            } for tool in response.tools]
            
            tool_names = [tool["name"] for tool in self.tools]
            return f"βœ… Connected to MCP server. Available tools: {', '.join(tool_names)}"
        except Exception as e:
            return f"❌ Failed to connect to MCP server: {str(e)}"
    
    def process_message(self, message: str, history: List[Union[Dict[str, Any], ChatMessage]]) -> tuple:
        if not self.anthropic:
            return history + [
                {"role": "user", "content": message}, 
                {"role": "assistant", "content": "❌ Please set your Anthropic API key first."}
            ], gr.Textbox(value="")
        
        if not self.session:
            return history + [
                {"role": "user", "content": message}, 
                {"role": "assistant", "content": "❌ Please connect to an MCP server first."}
            ], gr.Textbox(value="")
        
        try:
            new_messages = loop.run_until_complete(self._process_query(message, history))
            return history + [{"role": "user", "content": message}] + new_messages, gr.Textbox(value="")
        except Exception as e:
            return history + [
                {"role": "user", "content": message}, 
                {"role": "assistant", "content": f"❌ Error processing message: {str(e)}"}
            ], gr.Textbox(value="")
    
    async def _process_query(self, message: str, history: List[Union[Dict[str, Any], ChatMessage]]):
        claude_messages = []
        for msg in history:
            if isinstance(msg, ChatMessage):
                role, content = msg.role, msg.content
            else:
                role, content = msg.get("role"), msg.get("content")
            
            if role in ["user", "assistant", "system"]:
                claude_messages.append({"role": role, "content": content})
        
        claude_messages.append({"role": "user", "content": message})
        
        response = self.anthropic.messages.create(
            model="claude-3-5-sonnet-20241022",
            max_tokens=1000,
            messages=claude_messages,
            tools=self.tools
        )

        result_messages = []
        
        for content in response.content:
            if content.type == 'text':
                result_messages.append({
                    "role": "assistant", 
                    "content": content.text
                })
                
            elif content.type == 'tool_use':
                tool_name = content.name
                tool_args = content.input
                
                result_messages.append({
                    "role": "assistant",
                    "content": f"I'll use the {tool_name} tool to help answer your question.",
                    "metadata": {
                        "title": f"Using tool: {tool_name}",
                        "log": f"Parameters: {json.dumps(tool_args, ensure_ascii=True)}",
                        "status": "pending",
                        "id": f"tool_call_{tool_name}"
                    }
                })
                
                result_messages.append({
                    "role": "assistant",
                    "content": "```json\n" + json.dumps(tool_args, indent=2, ensure_ascii=True) + "\n```",
                    "metadata": {
                        "parent_id": f"tool_call_{tool_name}",
                        "id": f"params_{tool_name}",
                        "title": "Tool Parameters"
                    }
                })
                
                result = await self.session.call_tool(tool_name, tool_args)
                
                if result_messages and "metadata" in result_messages[-2]:
                    result_messages[-2]["metadata"]["status"] = "done"
                
                result_messages.append({
                    "role": "assistant",
                    "content": "Here are the results from the tool:",
                    "metadata": {
                        "title": f"Tool Result for {tool_name}",
                        "status": "done",
                        "id": f"result_{tool_name}"
                    }
                })
                
                result_content = result.content
                if isinstance(result_content, list):
                    result_content = "\n".join(str(item) for item in result_content)
                
                try:
                    result_json = json.loads(result_content)
                    if isinstance(result_json, dict) and "type" in result_json:
                        if result_json["type"] == "image" and "url" in result_json:
                            result_messages.append({
                                "role": "assistant",
                                "content": {"path": result_json["url"], "alt_text": result_json.get("message", "Generated image")},
                                "metadata": {
                                    "parent_id": f"result_{tool_name}",
                                    "id": f"image_{tool_name}",
                                    "title": "Generated Image"
                                }
                            })
                        else:
                            result_messages.append({
                                "role": "assistant",
                                "content": "```\n" + result_content + "\n```",
                                "metadata": {
                                    "parent_id": f"result_{tool_name}",
                                    "id": f"raw_result_{tool_name}",
                                    "title": "Raw Output"
                                }
                            })
                except:
                    result_messages.append({
                        "role": "assistant",
                        "content": "```\n" + result_content + "\n```",
                        "metadata": {
                            "parent_id": f"result_{tool_name}",
                            "id": f"raw_result_{tool_name}",
                            "title": "Raw Output"
                        }
                    })
                
                claude_messages.append({"role": "user", "content": f"Tool result for {tool_name}: {result_content}"})
                next_response = self.anthropic.messages.create(
                    model="claude-3-5-sonnet-20241022",
                    max_tokens=1000,
                    messages=claude_messages,
                )
                
                if next_response.content and next_response.content[0].type == 'text':
                    result_messages.append({
                        "role": "assistant",
                        "content": next_response.content[0].text
                    })

        return result_messages

client = MCPClientWrapper()

def gradio_interface():
    with gr.Blocks(title="MCP client") as demo:
        gr.Markdown("# MCP test")
        gr.Markdown("Connect to mcp server and chat with the assistant")
        
        # API Key Section
        with gr.Row(equal_height=True):
            with gr.Column(scale=4):
                api_key_input = gr.Textbox(
                    label="Anthropic API Key",
                    placeholder="Enter your Anthropic API key (sk-ant-...)",
                    type="password",
                    value=""
                )
            with gr.Column(scale=1):
                set_key_btn = gr.Button("Set API Key")
        
        api_key_status = gr.Textbox(label="API Key Status", interactive=False)
        
        # Server Connection Section
        with gr.Row(equal_height=True):
            with gr.Column(scale=4):
                server_path = gr.Textbox(
                    label="Server Script Path",
                    placeholder="Enter path to server script (e.g., weather.py)",
                    value="gradio_mcp_server.py"
                )
            with gr.Column(scale=1):
                connect_btn = gr.Button("Connect")
        
        connection_status = gr.Textbox(label="Connection Status", interactive=False)
        
        # Chat Section
        chatbot = gr.Chatbot(
            value=[], 
            height=500,
            type="messages",
            show_copy_button=True,
            avatar_images=("πŸ‘€", "πŸ€–")
        )
        
        with gr.Row(equal_height=True):
            msg = gr.Textbox(
                label="Your Question",
                placeholder="Ask about weather or alerts (e.g., What's the weather in New York?)",
                scale=4
            )
            clear_btn = gr.Button("Clear Chat", scale=1)
        
        # Event handlers
        set_key_btn.click(client.set_api_key, inputs=api_key_input, outputs=api_key_status)
        connect_btn.click(client.connect, inputs=server_path, outputs=connection_status)
        msg.submit(client.process_message, [msg, chatbot], [chatbot, msg])
        clear_btn.click(lambda: [], None, chatbot)
        
    return demo

if __name__ == "__main__":
    interface = gradio_interface()
    interface.launch(debug=True)