Spaces:
Sleeping
Sleeping
Create utils.py
Browse files
utils.py
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import Trainer, TrainingArguments, DataCollatorForLanguageModeling
|
| 2 |
+
from datasets import Dataset
|
| 3 |
+
|
| 4 |
+
def preprocess_data(df, tokenizer):
|
| 5 |
+
df["text"] = df.apply(lambda row: f"Question: {row['Question']} Answer: {row['Answer']}", axis=1)
|
| 6 |
+
dataset = Dataset.from_pandas(df)
|
| 7 |
+
dataset = dataset.map(lambda x: tokenizer(x["text"], truncation=True, padding="max_length", max_length=512), batched=True)
|
| 8 |
+
return dataset
|
| 9 |
+
|
| 10 |
+
def train_model(model, tokenizer, dataset, output_dir):
|
| 11 |
+
training_args = TrainingArguments(
|
| 12 |
+
output_dir=output_dir,
|
| 13 |
+
per_device_train_batch_size=4,
|
| 14 |
+
num_train_epochs=1,
|
| 15 |
+
logging_dir="./logs",
|
| 16 |
+
save_steps=10,
|
| 17 |
+
logging_steps=10
|
| 18 |
+
)
|
| 19 |
+
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
| 20 |
+
trainer = Trainer(
|
| 21 |
+
model=model,
|
| 22 |
+
args=training_args,
|
| 23 |
+
train_dataset=dataset,
|
| 24 |
+
data_collator=data_collator
|
| 25 |
+
)
|
| 26 |
+
trainer.train()
|
| 27 |
+
model.save_pretrained(output_dir)
|
| 28 |
+
tokenizer.save_pretrained(output_dir)
|