File size: 1,340 Bytes
7d4a00c
 
 
fa5f4f0
7d4a00c
 
84e1fbc
 
 
7d4a00c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import numpy as np
import pandas as pd
from sklearn.neighbors import KNeighborsRegressor
from joblib import dump, load
import gradio

scaler = load('scaler_lab4.joblib')
KNN_Regressor = load('knn_lab4.joblib')

## Building a Fubction for prediction:

def predictPrice(input1, input2, input3, input4, input5, input6, input7, input8):
  features = [input1, input2, input3, input4, input5, input6, input7, input8]
  scaler.fit(features)
  features_array = np.array(features).reshape(1, -1)
  prediction = KNN_Regressor.predict(features_array)
  return prediction


## Buidling inputs and outputs:

input1 = gr.Slider(-124.35, -114.31, step=5, label = "Longitude")
input2 = gr.Slider(32.54, 41.95, step=5, label = "Latitude")
input3 = gr.Slider(1, 52.0, step=5, label = "Housing_median_age (Year)")
input4 = gr.Slider(1, 39320.0, step=5, label = "Total_rooms")
input5 = gr.Slider(1, 6445.0, step=5, label = "Total_bedrooms")
input6 = gr.Slider(1, 35682.0, step=5, label = "Population")
input7 = gr.Slider(1, 6082.0, step=5, label = "Households")
input8 = gr.Slider(0, 15.0, step=5, label = "Median_income")

output1 = gr.Textbox(label = "House Value")


##title Putting it all together:

gr.Interface(fn=predictPrice, inputs=[input1, input2, input3, input4, input5, input6, input7, input8],
             outputs=output1).launch(show_error=True)