Gallai's picture
Update app.py
c832be8 verified
raw
history blame
1.36 kB
import numpy as np
import pandas as pd
from sklearn.neighbors import KNeighborsRegressor
from joblib import dump, load
import gradio as gr
scaler = load('scaler_lab4.joblib')
KNN_Regressor = load('knn_lab4.joblib')
## Building a Fubction for prediction:
def predictPrice(input1, input2, input3, input4, input5, input6, input7, input8):
features = np.array([[input1, input2, input3, input4, input5, input6, input7, input8]])
features_scaled = scaler.transform(features)
prediction = KNN_Regressor.predict(features_scaled)
return prediction.item()
## Buidling inputs and outputs:
input1 = gr.Slider(-124.35, -114.31, step=5, label = "Longitude")
input2 = gr.Slider(32.54, 41.95, step=5, label = "Latitude")
input3 = gr.Slider(1, 52.0, step=5, label = "Housing_median_age (Year)")
input4 = gr.Slider(1, 39320.0, step=5, label = "Total_rooms")
input5 = gr.Slider(1, 6445.0, step=5, label = "Total_bedrooms")
input6 = gr.Slider(1, 35682.0, step=5, label = "Population")
input7 = gr.Slider(1, 6082.0, step=5, label = "Households")
input8 = gr.Slider(0, 15.0, step=5, label = "Median_income")
output1 = gr.Textbox(label = "House Value")
##title Putting it all together:
gr.Interface(fn=predictPrice, inputs=[input1, input2, input3, input4, input5, input6, input7, input8],
outputs=output1).launch(show_error=True, share=True)