Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,67 +1,67 @@
|
|
1 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
2 |
-
from fastapi import FastAPI, HTTPException
|
3 |
-
from pydantic import BaseModel
|
4 |
-
import torch
|
5 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
6 |
-
import nltk
|
7 |
-
from nltk.corpus import stopwords
|
8 |
-
import re
|
9 |
-
import spacy
|
10 |
-
|
11 |
-
nltk.download('stopwords')
|
12 |
-
stop_words = set(stopwords.words('english'))
|
13 |
-
|
14 |
-
def clean_text(text):
|
15 |
-
text = text.lower() # Convert to lowercase
|
16 |
-
text = re.sub(r'[^\w\s]', '', text) # Remove punctuation
|
17 |
-
text = ' '.join([word for word in text.split() if word not in stop_words]) # Remove stopwords
|
18 |
-
return text
|
19 |
-
|
20 |
-
roberta_model = AutoModelForSequenceClassification.from_pretrained("roberta-base")
|
21 |
-
roberta_tokenizer = AutoTokenizer.from_pretrained("roberta-base")
|
22 |
-
|
23 |
-
# Load BERT model and tokenizer
|
24 |
-
bert_model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased")
|
25 |
-
bert_tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
26 |
-
|
27 |
-
app = FastAPI()
|
28 |
-
|
29 |
-
class TextData(BaseModel):
|
30 |
-
text: str
|
31 |
-
|
32 |
-
# Helper function to make predictions and convert to 0 (human) or 100 (AI)
|
33 |
-
def predict_text(model, tokenizer, text):
|
34 |
-
text=clean_text(text)
|
35 |
-
# Preprocess the text
|
36 |
-
inputs = tokenizer(text, truncation=True, padding='max_length', max_length=128, return_tensors='pt')
|
37 |
-
|
38 |
-
# Move to the correct device (GPU/CPU)
|
39 |
-
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
40 |
-
model.to(device)
|
41 |
-
inputs = {k: v.to(device) for k, v in inputs.items()}
|
42 |
-
|
43 |
-
# Get model predictions
|
44 |
-
with torch.no_grad():
|
45 |
-
outputs = model(**inputs)
|
46 |
-
|
47 |
-
# Convert logits to probabilities
|
48 |
-
logits = outputs.logits
|
49 |
-
probabilities = torch.softmax(logits, dim=-1)
|
50 |
-
predicted_class = torch.argmax(probabilities, dim=-1).item()
|
51 |
-
#ai_prob = probabilities[0][1].item() * 100
|
52 |
-
#print(ai_prob)
|
53 |
-
# Return 0 for human, 100 for AI
|
54 |
-
return 100 if predicted_class == 1 else 0
|
55 |
-
|
56 |
-
# Endpoint to predict with RoBERTa
|
57 |
-
@app.post("/predict_copyleaks_V1")
|
58 |
-
def predict_roberta(data: TextData):
|
59 |
-
predicted_value = predict_text(roberta_model, roberta_tokenizer, data.text)
|
60 |
-
return {"text": data.text, "Score": predicted_value}
|
61 |
-
|
62 |
-
# Endpoint to predict with BERT
|
63 |
-
@app.post("/predict_copyleaks_V2")
|
64 |
-
def predict_bert(data: TextData):
|
65 |
-
predicted_value = predict_text(bert_model, bert_tokenizer, data.text)
|
66 |
-
return {"text": data.text, "Score": predicted_value}
|
67 |
-
|
|
|
1 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
2 |
+
from fastapi import FastAPI, HTTPException
|
3 |
+
from pydantic import BaseModel
|
4 |
+
import torch
|
5 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
6 |
+
import nltk
|
7 |
+
from nltk.corpus import stopwords
|
8 |
+
import re
|
9 |
+
import spacy
|
10 |
+
|
11 |
+
nltk.download('stopwords')
|
12 |
+
stop_words = set(stopwords.words('english'))
|
13 |
+
|
14 |
+
def clean_text(text):
|
15 |
+
text = text.lower() # Convert to lowercase
|
16 |
+
text = re.sub(r'[^\w\s]', '', text) # Remove punctuation
|
17 |
+
text = ' '.join([word for word in text.split() if word not in stop_words]) # Remove stopwords
|
18 |
+
return text
|
19 |
+
|
20 |
+
roberta_model = AutoModelForSequenceClassification.from_pretrained("./roberta-base")
|
21 |
+
roberta_tokenizer = AutoTokenizer.from_pretrained("./roberta-base")
|
22 |
+
|
23 |
+
# Load BERT model and tokenizer
|
24 |
+
bert_model = AutoModelForSequenceClassification.from_pretrained("./bert-base-uncased")
|
25 |
+
bert_tokenizer = AutoTokenizer.from_pretrained("./bert-base-uncased")
|
26 |
+
|
27 |
+
app = FastAPI()
|
28 |
+
|
29 |
+
class TextData(BaseModel):
|
30 |
+
text: str
|
31 |
+
|
32 |
+
# Helper function to make predictions and convert to 0 (human) or 100 (AI)
|
33 |
+
def predict_text(model, tokenizer, text):
|
34 |
+
text=clean_text(text)
|
35 |
+
# Preprocess the text
|
36 |
+
inputs = tokenizer(text, truncation=True, padding='max_length', max_length=128, return_tensors='pt')
|
37 |
+
|
38 |
+
# Move to the correct device (GPU/CPU)
|
39 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
40 |
+
model.to(device)
|
41 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
42 |
+
|
43 |
+
# Get model predictions
|
44 |
+
with torch.no_grad():
|
45 |
+
outputs = model(**inputs)
|
46 |
+
|
47 |
+
# Convert logits to probabilities
|
48 |
+
logits = outputs.logits
|
49 |
+
probabilities = torch.softmax(logits, dim=-1)
|
50 |
+
predicted_class = torch.argmax(probabilities, dim=-1).item()
|
51 |
+
#ai_prob = probabilities[0][1].item() * 100
|
52 |
+
#print(ai_prob)
|
53 |
+
# Return 0 for human, 100 for AI
|
54 |
+
return 100 if predicted_class == 1 else 0
|
55 |
+
|
56 |
+
# Endpoint to predict with RoBERTa
|
57 |
+
@app.post("/predict_copyleaks_V1")
|
58 |
+
def predict_roberta(data: TextData):
|
59 |
+
predicted_value = predict_text(roberta_model, roberta_tokenizer, data.text)
|
60 |
+
return {"text": data.text, "Score": predicted_value}
|
61 |
+
|
62 |
+
# Endpoint to predict with BERT
|
63 |
+
@app.post("/predict_copyleaks_V2")
|
64 |
+
def predict_bert(data: TextData):
|
65 |
+
predicted_value = predict_text(bert_model, bert_tokenizer, data.text)
|
66 |
+
return {"text": data.text, "Score": predicted_value}
|
67 |
+
|