Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
@@ -1,61 +0,0 @@
|
|
1 |
-
'''import requests
|
2 |
-
import streamlit as st
|
3 |
-
|
4 |
-
# Replace with the actual URL of your deployed FastAPI backend
|
5 |
-
API_URL = "http://127.0.0.1:8000/predict"
|
6 |
-
|
7 |
-
def main():
|
8 |
-
text_input = st.text_input("Enter text to score:")
|
9 |
-
if st.button("Score Text"):
|
10 |
-
response = requests.post(API_URL, json={"text": text_input})
|
11 |
-
data = response.json()
|
12 |
-
st.write(f"Score: {data['score']}")
|
13 |
-
st.write(f"Message: {data['message']}")
|
14 |
-
|
15 |
-
if __name__ == "__main__":
|
16 |
-
main()'''
|
17 |
-
|
18 |
-
import streamlit as st
|
19 |
-
import torch
|
20 |
-
from transformers import RobertaTokenizer, RobertaForSequenceClassification
|
21 |
-
|
22 |
-
# Load the tokenizer
|
23 |
-
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
|
24 |
-
|
25 |
-
# Load the model
|
26 |
-
model_path = "model_ai_detection"
|
27 |
-
model = RobertaForSequenceClassification.from_pretrained(model_path)
|
28 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
29 |
-
model.to(device)
|
30 |
-
model.eval()
|
31 |
-
|
32 |
-
def predict(text):
|
33 |
-
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
34 |
-
inputs = {k: v.to(device) for k, v in inputs.items()}
|
35 |
-
|
36 |
-
with torch.no_grad():
|
37 |
-
outputs = model(**inputs)
|
38 |
-
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
39 |
-
ai_prob = probs[0][1].item() * 100 # Probability of the text being AI-generated
|
40 |
-
|
41 |
-
message = "The text is likely generated by AI." if ai_prob > 50 else "The text is likely generated by a human."
|
42 |
-
|
43 |
-
return {
|
44 |
-
"score": ai_prob,
|
45 |
-
"message": message
|
46 |
-
}
|
47 |
-
|
48 |
-
def main():
|
49 |
-
st.title("AI Text Detector")
|
50 |
-
text_input = st.text_area("Enter text to score:")
|
51 |
-
if st.button("Score Text"):
|
52 |
-
if text_input:
|
53 |
-
result = predict(text_input)
|
54 |
-
st.write(f"Score: {result['score']:.2f}%")
|
55 |
-
st.write(f"Message: {result['message']}")
|
56 |
-
else:
|
57 |
-
st.write("Please enter some text to score.")
|
58 |
-
|
59 |
-
if __name__ == "__main__":
|
60 |
-
main()
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|