asr-demo / app.py
GavinHuang's picture
feat: add file transcription functionality and enhance UI for model selection
2b5f9bc
raw
history blame
11.9 kB
import os
import gradio as gr
import torch
import nemo.collections.asr as nemo_asr
from omegaconf import OmegaConf
import time
import spaces
import librosa
# Important: Don't initialize CUDA in the main process for Spaces
# The model will be loaded in the worker process through the GPU decorator
model = None
current_model_name = "nvidia/parakeet-tdt-0.6b-v2"
# Available models
available_models = ["nvidia/parakeet-tdt-0.6b-v2"]
def load_model(model_name=None):
# This function will be called in the GPU worker process
global model, current_model_name
# Use the specified model name or the current one
model_name = model_name or current_model_name
# Check if we need to load a new model
if model is None or model_name != current_model_name:
print(f"Loading model {model_name} in worker process")
print(f"CUDA available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
print(f"CUDA device: {torch.cuda.get_device_name(0)}")
# Update the current model name
current_model_name = model_name
# Load the selected model
model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained(model_name)
print(f"Model loaded on device: {model.device}")
return model
@spaces.GPU(duration=120)
def transcribe(audio, model_name="nvidia/parakeet-tdt-0.6b-v2", state="", audio_buffer=None, last_processed_time=0):
# Load the model inside the GPU worker process
import numpy as np
import soundfile as sf
import librosa
import os
model = load_model(model_name)
if audio_buffer is None:
audio_buffer = []
if audio is None or isinstance(audio, int):
print(f"Skipping invalid audio input: {type(audio)}")
return state, state, audio_buffer, last_processed_time
print(f"Received audio input of type: {type(audio)}")
if isinstance(audio, tuple) and len(audio) == 2 and isinstance(audio[1], np.ndarray):
sample_rate, audio_data = audio
print(f"Sample rate: {sample_rate}, Audio shape: {audio_data.shape}")
# Append chunk to buffer
audio_buffer.append(audio_data)
# Calculate total duration in seconds
total_samples = sum(arr.shape[0] for arr in audio_buffer)
total_duration = total_samples / sample_rate
print(f"Total buffered duration: {total_duration:.2f}s")
# Process 3-second chunks with 1-second step size (2-second overlap)
chunk_duration = 3.0 # seconds
step_size = 1.0 # seconds
min_samples = int(chunk_duration * 16000) # 3s at 16kHz
if total_duration < chunk_duration:
print(f"Buffering audio, total duration: {total_duration:.2f}s")
return state, state, audio_buffer, last_processed_time
try:
# Concatenate buffered chunks
full_audio = np.concatenate(audio_buffer)
# Resample to 16kHz if needed
if sample_rate != 16000:
print(f"Resampling from {sample_rate}Hz to 16000Hz")
full_audio = librosa.resample(full_audio.astype(float), orig_sr=sample_rate, target_sr=16000)
sample_rate = 16000
else:
full_audio = full_audio.astype(float)
# Process 3-second chunks
new_state = state
current_time = last_processed_time
total_samples_16k = len(full_audio)
while current_time + chunk_duration <= total_duration:
start_sample = int(current_time * sample_rate)
end_sample = int((current_time + chunk_duration) * sample_rate)
if end_sample > total_samples_16k:
break
chunk = full_audio[start_sample:end_sample]
print(f"Processing chunk from {current_time:.2f}s to {current_time + chunk_duration:.2f}s")
# Save to temporary WAV file
temp_file = "temp_audio.wav"
sf.write(temp_file, chunk, samplerate=16000)
# Transcribe
hypothesis = model.transcribe([temp_file])[0]
transcription = hypothesis.text
print(f"Transcription: {transcription}")
os.remove(temp_file)
print("Temporary file removed.")
# Append transcription if non-empty
if transcription.strip():
new_state = new_state + " " + transcription if new_state else transcription
current_time += step_size
# Update last processed time
last_processed_time = current_time
# Trim buffer to keep only unprocessed audio
keep_samples = int((total_duration - current_time) * sample_rate)
if keep_samples > 0:
audio_buffer = [full_audio[-keep_samples:]]
else:
audio_buffer = []
print(f"New state: {new_state}")
return new_state, new_state, audio_buffer, last_processed_time
except Exception as e:
print(f"Error processing audio: {e}")
return state, state, audio_buffer, last_processed_time
print(f"Invalid audio input format: {type(audio)}")
return state, state, audio_buffer, last_processed_time
@spaces.GPU(duration=120)
def transcribe_file(audio_file, model_name="nvidia/parakeet-tdt-0.6b-v2"):
# Load the model inside the GPU worker process
import numpy as np
import soundfile as sf
import librosa
import os
# Check if audio file is provided
if audio_file is None:
return "No audio file provided. Please upload an audio file."
try:
model = load_model(model_name)
print(f"Processing file: {audio_file}")
# Transcribe the entire file at once
hypothesis = model.transcribe([audio_file])[0]
transcription = hypothesis.text
print(f"File transcription: {transcription}")
return transcription
except Exception as e:
print(f"Error transcribing file: {e}")
return f"Error transcribing file: {str(e)}"
# Define the Gradio interface
with gr.Blocks(title="Real-time Speech-to-Text with NeMo") as demo:
gr.Markdown("# 🎙️ Real-time Speech-to-Text Transcription")
gr.Markdown("Powered by NVIDIA NeMo")
# Model selection and loading
with gr.Row():
with gr.Column(scale=3):
model_dropdown = gr.Dropdown(
choices=available_models,
value=current_model_name,
label="Select ASR Model"
)
with gr.Column(scale=1):
load_button = gr.Button("Load Selected Model")
# Status indicator for model loading
model_status = gr.Textbox(value=f"Current model: {current_model_name}", label="Model Status")
# Create tabs for real-time and file-based transcription
with gr.Tabs():
# Real-time transcription tab
with gr.TabItem("Real-time Transcription"):
with gr.Row():
with gr.Column(scale=2):
audio_input = gr.Audio(
sources=["microphone"],
type="numpy",
streaming=True,
label="Speak into your microphone"
)
clear_btn = gr.Button("Clear Transcript")
with gr.Column(scale=3):
text_output = gr.Textbox(
label="Transcription",
placeholder="Your speech will appear here...",
lines=10
)
streaming_text = gr.Textbox(
label="Real-time Transcription",
placeholder="Real-time results will appear here...",
lines=2
)
# File-based transcription tab
with gr.TabItem("File Transcription"):
with gr.Row():
with gr.Column(scale=2):
# Audio recorder that saves to file
audio_recorder = gr.Audio(
sources=["microphone"],
type="filepath",
label="Record or upload audio file"
)
transcribe_btn = gr.Button("Transcribe Audio File")
with gr.Column(scale=3):
file_transcription = gr.Textbox(
label="File Transcription",
placeholder="Transcription will appear here after clicking 'Transcribe Audio File'",
lines=10
)
# State to store the ongoing transcription
state = gr.State("")
audio_buffer = gr.State(value=None)
last_processed_time = gr.State(value=0)
# Function to handle model selection
def update_model(model_name):
global current_model_name, model
current_model_name = model_name
# Load the model immediately if we're in a GPU context
try:
# This will load the model in the GPU worker
model = load_model(model_name)
status_message = f"Current model: {model_name} (loaded)"
print(f"Model {model_name} loaded successfully")
except Exception as e:
status_message = f"Current model: {model_name} (will be loaded on first use)"
print(f"Model will be loaded on first use: {e}")
return status_message, None, 0 # Reset audio buffer and last processed time
# Load model button event
load_button.click(
fn=update_model,
inputs=[model_dropdown],
outputs=[model_status, audio_buffer, last_processed_time]
)
# Handle the audio stream for real-time transcription
audio_input.stream(
fn=transcribe,
inputs=[audio_input, model_dropdown, state, audio_buffer, last_processed_time],
outputs=[state, streaming_text, audio_buffer, last_processed_time],
)
# Handle file transcription
transcribe_btn.click(
fn=transcribe_file,
inputs=[audio_recorder, model_dropdown],
outputs=[file_transcription]
)
# Clear the transcription
def clear_transcription():
return "", "", None, 0
clear_btn.click(
fn=clear_transcription,
inputs=[],
outputs=[text_output, streaming_text, audio_buffer, last_processed_time]
)
# Update the main text output when the state changes
state.change(
fn=lambda s: s,
inputs=[state],
outputs=[text_output]
)
gr.Markdown("## 📝 Instructions")
gr.Markdown("""
### Real-time Transcription:
1. Select an ASR model from the dropdown menu
2. Click 'Load Selected Model' to load the model
3. Click the microphone button to start recording
4. Speak clearly into your microphone
5. The transcription will appear in real-time
6. Click 'Clear Transcript' to start a new transcription
### File Transcription:
1. Select an ASR model from the dropdown menu
2. Click 'Load Selected Model' to load the model
3. Switch to the 'File Transcription' tab
4. Record audio by clicking the microphone button or upload an existing audio file
5. Click 'Transcribe Audio File' to process the recording
6. The complete transcription will appear in the text box
""")
# Launch the app
if __name__ == "__main__":
demo.launch()