File size: 1,707 Bytes
9f8c851
6d60c2b
9f8c851
7596367
6d60c2b
 
461c219
6d60c2b
37e27c1
9f8c851
7596367
 
6d60c2b
 
7596367
 
 
 
 
 
 
 
9f8c851
7596367
6d60c2b
7596367
9f8c851
7596367
 
 
 
 
 
9f8c851
7596367
9f8c851
7596367
 
9f8c851
 
7596367
9f8c851
7596367
 
 
 
9f8c851
7596367
9f8c851
7596367
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import streamlit as st
#from transformers import pipeline

# Function to get response from LLaMA 2 model
from transformers import MistralForCausalLM
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('mistralai/mathstral-7B-v0.1')


def getLLamaresponse(input_text, keywords, blog_style):
    # Load the LLaMA 2 model from Hugging Face
    model_name = MistralForCausalLM.from_pretrained('mistralai/mathstral-7B-v0.1')
    #llm = pipeline('text-generation', model=model_name)

    # Prompt Template
    template = """
        Generate project idea for {blog_style} by using keywords like {keywords} for the profession of {input_text}.
    """

    # Format the prompt
    prompt = template.format(blog_style=blog_style, input_text=input_text, keywords=keywords)

    # Generate the response from the LLaMA 2 model
    response = model.generate(prompt, max_length=250, temperature=0.01)
    return response[0]['generated_text']

st.set_page_config(page_title="Generate Project Idea",
                   page_icon='🤖',
                   layout='centered',
                   initial_sidebar_state='collapsed')

st.header("Generate Project Idea 🤖")

input_text = st.text_input("Enter the Topic")

# Creating two more columns for additional fields
col1, col2 = st.columns([5, 5])

with col1:
    no_words = st.text_input('Keywords')
with col2:
    blog_style = st.selectbox('Generating project idea for',
                              ('Researchers', 'Data Scientist', 'Software Developer', 'Common People', " "), index=0)

submit = st.button("Generate")

# Final response
if submit:
    response = getLLamaresponse(input_text, no_words, blog_style)
    st.write(response)