Gayatrikh16 commited on
Commit
9da41c7
·
verified ·
1 Parent(s): 7799ee4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -23
app.py CHANGED
@@ -1,30 +1,24 @@
1
  import streamlit as st
2
- #from transformers import pipeline
 
3
 
4
- # Function to get response from LLaMA 2 model
5
- from transformers import MistralForCausalLM
6
- from transformers import AutoTokenizer
7
-
8
- tokenizer = AutoTokenizer.from_pretrained('mistralai/mathstral-7B-v0.1')
9
-
10
-
11
- def getLLamaresponse(input_text, keywords, blog_style):
12
- # Load the LLaMA 2 model from Hugging Face
13
- model_name = MistralForCausalLM.from_pretrained('mistralai/mathstral-7B-v0.1')
14
- #llm = pipeline('text-generation', model=model_name)
15
 
 
 
16
  # Prompt Template
17
  template = """
18
- Generate project idea for {blog_style} by using keywords like {keywords} for the profession of {input_text}.
19
  """
20
-
21
- # Format the prompt
22
  prompt = template.format(blog_style=blog_style, input_text=input_text, keywords=keywords)
 
 
 
 
23
 
24
- # Generate the response from the LLaMA 2 model
25
- response = model.generate(prompt, max_length=250, temperature=0.01)
26
- return response[0]['generated_text']
27
-
28
  st.set_page_config(page_title="Generate Project Idea",
29
  page_icon='🤖',
30
  layout='centered',
@@ -38,14 +32,14 @@ input_text = st.text_input("Enter the Topic")
38
  col1, col2 = st.columns([5, 5])
39
 
40
  with col1:
41
- no_words = st.text_input('Keywords')
42
  with col2:
43
  blog_style = st.selectbox('Generating project idea for',
44
- ('Researchers', 'Data Scientist', 'Software Developer', 'Common People', " "), index=0)
45
-
46
  submit = st.button("Generate")
47
 
48
  # Final response
49
  if submit:
50
- response = getLLamaresponse(input_text, no_words, blog_style)
51
  st.write(response)
 
1
  import streamlit as st
2
+ from langchain.prompts import PromptTemplate
3
+ from transformers import pipeline
4
 
5
+ # Initialize the Hugging Face pipeline
6
+ pipe = pipeline("text2text-generation", model="google/flan-t5-small")
 
 
 
 
 
 
 
 
 
7
 
8
+ # Function to get response from the model
9
+ def get_response(input_text, keywords, blog_style):
10
  # Prompt Template
11
  template = """
12
+ Generate technical project ideas for {blog_style} job profile for a topic {input_text} using these keywords: {keywords}.
13
  """
14
+
 
15
  prompt = template.format(blog_style=blog_style, input_text=input_text, keywords=keywords)
16
+
17
+ # Generate the response from the model
18
+ response = pipe(prompt)
19
+ return response[0]['generated_text'] # Extract the generated text
20
 
21
+ # Streamlit configuration
 
 
 
22
  st.set_page_config(page_title="Generate Project Idea",
23
  page_icon='🤖',
24
  layout='centered',
 
32
  col1, col2 = st.columns([5, 5])
33
 
34
  with col1:
35
+ keywords = st.text_input('Keywords')
36
  with col2:
37
  blog_style = st.selectbox('Generating project idea for',
38
+ ('Researchers', 'Data Scientist', 'Software Developer', 'Common People'), index=0)
39
+
40
  submit = st.button("Generate")
41
 
42
  # Final response
43
  if submit:
44
+ response = get_response(input_text, keywords, blog_style)
45
  st.write(response)