Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,12 @@
|
|
|
|
1 |
import yfinance as yf
|
2 |
import pandas as pd
|
3 |
-
import
|
|
|
4 |
from sklearn.preprocessing import MinMaxScaler
|
5 |
-
from tensorflow import keras
|
6 |
from tensorflow.keras.models import Sequential
|
7 |
from tensorflow.keras.layers import Dense, LSTM, GRU
|
8 |
-
|
9 |
-
from kerastuner.tuners import RandomSearch
|
10 |
|
11 |
# Function to load stock data using yfinance
|
12 |
def get_stock_data(symbol, start_date, end_date):
|
@@ -20,128 +20,104 @@ def prepare_data(data):
|
|
20 |
return scaled_data, scaler
|
21 |
|
22 |
# Function to create LSTM model
|
23 |
-
def create_lstm_model(input_shape
|
24 |
model = Sequential()
|
25 |
-
model.add(LSTM(units=
|
26 |
-
|
27 |
-
model.add(LSTM(units=
|
28 |
-
return_sequences=True))
|
29 |
-
model.add(LSTM(units=hp.Int('units', min_value=32, max_value=512, step=32)))
|
30 |
model.add(Dense(units=1))
|
31 |
model.compile(optimizer='adam', loss='mean_squared_error')
|
32 |
return model
|
33 |
|
34 |
# Function to create GRU model
|
35 |
-
def create_gru_model(input_shape
|
36 |
model = Sequential()
|
37 |
-
model.add(GRU(units=
|
38 |
-
|
39 |
-
model.add(GRU(units=
|
40 |
-
return_sequences=True))
|
41 |
-
model.add(GRU(units=hp.Int('units', min_value=32, max_value=512, step=32)))
|
42 |
model.add(Dense(units=1))
|
43 |
model.compile(optimizer='adam', loss='mean_squared_error')
|
44 |
return model
|
45 |
|
46 |
-
# Function to
|
47 |
-
def
|
48 |
-
|
49 |
-
|
50 |
-
d = hp.Int('d', min_value=0, max_value=1, step=1)
|
51 |
-
q = hp.Int('q', min_value=1, max_value=5, step=1)
|
52 |
-
|
53 |
-
model = ARIMA(data, order=(p, d, q))
|
54 |
-
return model
|
55 |
|
56 |
-
#
|
57 |
-
|
58 |
-
|
59 |
-
objective=objective,
|
60 |
-
max_epochs=10,
|
61 |
-
factor=3,
|
62 |
-
directory='keras_tuner_logs',
|
63 |
-
project_name='stock_price_forecasting')
|
64 |
-
|
65 |
-
# Function to fit ARIMA model using Keras Tuner
|
66 |
-
def tune_arima_model(data, tuner, hp):
|
67 |
-
# The ARIMA model is fit differently than neural networks
|
68 |
-
model = tuner.oracle.get_best_trials(1)[0].hyperparameters.values
|
69 |
-
order = (model['p'], model['d'], model['q'])
|
70 |
-
|
71 |
-
# Fit ARIMA model
|
72 |
-
arima_model = ARIMA(data, order=order)
|
73 |
-
arima_model_fit = arima_model.fit()
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
-
|
81 |
|
82 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
def ensemble_forecast(predictions_list):
|
84 |
return pd.DataFrame(predictions_list).mean(axis=0)
|
85 |
|
|
|
|
|
|
|
86 |
# Load stock data
|
87 |
symbol = 'AAPL' # Replace with the desired stock symbol
|
88 |
start_date = '2021-01-01'
|
89 |
end_date = '2022-01-01'
|
90 |
stock_prices = get_stock_data(symbol, start_date, end_date)
|
91 |
|
92 |
-
#
|
93 |
-
|
94 |
-
|
95 |
-
# Objective for Keras Tuner
|
96 |
-
def objective(hp):
|
97 |
-
lstm_model = create_lstm_model(input_shape, hp)
|
98 |
-
lstm_model.fit(x_train, y_train, epochs=10, validation_split=0.2)
|
99 |
-
loss = lstm_model.evaluate(x_test, y_test)
|
100 |
-
return loss
|
101 |
-
|
102 |
-
# Create Keras Tuner for LSTM
|
103 |
-
tuner_lstm = create_tuner(create_lstm_model, objective)
|
104 |
-
|
105 |
-
# Split data into training and testing sets for LSTM
|
106 |
-
scaled_data, scaler = prepare_data(stock_prices)
|
107 |
-
input_data = scaled_data.reshape(-1, 1)
|
108 |
-
|
109 |
-
train_size = int(len(input_data) * 0.80)
|
110 |
-
train_data, test_data = input_data[0:train_size, :], input_data[train_size:len(input_data), :]
|
111 |
-
|
112 |
-
x_train, y_train = [], []
|
113 |
-
for i in range(60, len(train_data)):
|
114 |
-
x_train.append(train_data[i - 60:i, 0])
|
115 |
-
y_train.append(train_data[i, 0])
|
116 |
-
|
117 |
-
x_train, y_train = np.array(x_train), np.array(y_train)
|
118 |
-
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1))
|
119 |
-
|
120 |
-
x_test, y_test = [], []
|
121 |
-
for i in range(60, len(test_data)):
|
122 |
-
x_test.append(test_data[i - 60:i, 0])
|
123 |
-
y_test.append(test_data[i, 0])
|
124 |
-
|
125 |
-
x_test, y_test = np.array(x_test), np.array(y_test)
|
126 |
-
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1))
|
127 |
|
128 |
-
#
|
129 |
-
|
130 |
|
131 |
-
#
|
132 |
-
|
133 |
|
134 |
-
#
|
135 |
-
lstm_predictions =
|
136 |
-
lstm_predictions = scaler.inverse_transform(lstm_predictions)
|
137 |
|
138 |
-
#
|
139 |
-
|
140 |
-
tuner_arima.search(stock_prices, epochs=10, validation_split=0.2)
|
141 |
|
142 |
-
#
|
143 |
-
|
144 |
|
145 |
-
#
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
import yfinance as yf
|
3 |
import pandas as pd
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from statsmodels.tsa.arima.model import ARIMA
|
6 |
from sklearn.preprocessing import MinMaxScaler
|
|
|
7 |
from tensorflow.keras.models import Sequential
|
8 |
from tensorflow.keras.layers import Dense, LSTM, GRU
|
9 |
+
import numpy as np
|
|
|
10 |
|
11 |
# Function to load stock data using yfinance
|
12 |
def get_stock_data(symbol, start_date, end_date):
|
|
|
20 |
return scaled_data, scaler
|
21 |
|
22 |
# Function to create LSTM model
|
23 |
+
def create_lstm_model(input_shape):
|
24 |
model = Sequential()
|
25 |
+
model.add(LSTM(units=50, return_sequences=True, input_shape=input_shape))
|
26 |
+
model.add(LSTM(units=50, return_sequences=True))
|
27 |
+
model.add(LSTM(units=50))
|
|
|
|
|
28 |
model.add(Dense(units=1))
|
29 |
model.compile(optimizer='adam', loss='mean_squared_error')
|
30 |
return model
|
31 |
|
32 |
# Function to create GRU model
|
33 |
+
def create_gru_model(input_shape):
|
34 |
model = Sequential()
|
35 |
+
model.add(GRU(units=50, return_sequences=True, input_shape=input_shape))
|
36 |
+
model.add(GRU(units=50, return_sequences=True))
|
37 |
+
model.add(GRU(units=50))
|
|
|
|
|
38 |
model.add(Dense(units=1))
|
39 |
model.compile(optimizer='adam', loss='mean_squared_error')
|
40 |
return model
|
41 |
|
42 |
+
# Function to fit LSTM/GRU model and make predictions
|
43 |
+
def lstm_gru_forecast(data, model_type, steps):
|
44 |
+
scaled_data, scaler = prepare_data(data)
|
45 |
+
input_data = scaled_data.reshape(-1, 1)
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
# Split data into training and testing sets
|
48 |
+
train_size = int(len(input_data) * 0.80)
|
49 |
+
train_data, test_data = input_data[0:train_size, :], input_data[train_size:len(input_data), :]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
x_train, y_train = [], []
|
52 |
+
for i in range(60, len(train_data)):
|
53 |
+
x_train.append(train_data[i - 60:i, 0])
|
54 |
+
y_train.append(train_data[i, 0])
|
55 |
+
|
56 |
+
x_train, y_train = np.array(x_train), np.array(y_train)
|
57 |
+
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1))
|
58 |
+
|
59 |
+
# Create and fit the model
|
60 |
+
input_shape = (x_train.shape[1], 1)
|
61 |
+
if model_type == 'lstm':
|
62 |
+
model = create_lstm_model(input_shape)
|
63 |
+
elif model_type == 'gru':
|
64 |
+
model = create_gru_model(input_shape)
|
65 |
|
66 |
+
model.fit(x_train, y_train, epochs=25, batch_size=32)
|
67 |
|
68 |
+
# Make predictions
|
69 |
+
inputs = input_data[len(input_data) - len(test_data) - 60:]
|
70 |
+
inputs = inputs.reshape(-1, 1)
|
71 |
+
x_test = []
|
72 |
+
for i in range(60, len(inputs)):
|
73 |
+
x_test.append(inputs[i - 60:i, 0])
|
74 |
+
x_test = np.array(x_test)
|
75 |
+
|
76 |
+
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1))
|
77 |
+
predicted_prices = model.predict(x_test)
|
78 |
+
predicted_prices = scaler.inverse_transform(predicted_prices)
|
79 |
+
|
80 |
+
# Create an index for the forecasted values
|
81 |
+
forecast_index = pd.date_range(start=data.index[-1], periods=steps + 1, freq=data.index.freq)
|
82 |
+
|
83 |
+
return pd.Series(predicted_prices.flatten(), index=forecast_index[1:])
|
84 |
+
|
85 |
+
# Function to create an ensemble forecast by averaging predictions
|
86 |
def ensemble_forecast(predictions_list):
|
87 |
return pd.DataFrame(predictions_list).mean(axis=0)
|
88 |
|
89 |
+
# Streamlit App
|
90 |
+
st.title("Stock Price Forecasting App")
|
91 |
+
|
92 |
# Load stock data
|
93 |
symbol = 'AAPL' # Replace with the desired stock symbol
|
94 |
start_date = '2021-01-01'
|
95 |
end_date = '2022-01-01'
|
96 |
stock_prices = get_stock_data(symbol, start_date, end_date)
|
97 |
|
98 |
+
# ARIMA parameters
|
99 |
+
arima_order = (3, 0, 0) # Example: AR component (p) is set to 3, differencing (d) is 0, MA component (q) is 0
|
100 |
+
arima_forecast_steps = 30 # Number of steps to forecast (adjust based on your preference)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
+
# LSTM and GRU parameters
|
103 |
+
lstm_gru_forecast_steps = 30 # Number of steps to forecast (adjust based on your preference)
|
104 |
|
105 |
+
# ARIMA Forecast
|
106 |
+
arima_predictions = arima_forecast(stock_prices, arima_order, arima_forecast_steps)
|
107 |
|
108 |
+
# LSTM Forecast
|
109 |
+
lstm_predictions = lstm_gru_forecast(stock_prices, 'lstm', lstm_gru_forecast_steps)
|
|
|
110 |
|
111 |
+
# GRU Forecast
|
112 |
+
gru_predictions = lstm_gru_forecast(stock_prices, 'gru', lstm_gru_forecast_steps)
|
|
|
113 |
|
114 |
+
# Ensemble Forecast (Averaging)
|
115 |
+
ensemble_predictions = ensemble_forecast([arima_predictions, lstm_predictions, gru_predictions])
|
116 |
|
117 |
+
# Plotting
|
118 |
+
st.write("### Historical Stock Prices and Forecasts")
|
119 |
+
st.line_chart(stock_prices)
|
120 |
+
st.line_chart(arima_predictions)
|
121 |
+
st.line_chart(lstm_predictions)
|
122 |
+
st.line_chart(gru_predictions)
|
123 |
+
st.line_chart(ensemble_predictions)
|