|
import streamlit as st |
|
import requests |
|
from Pandas_Market_Predictor import Pandas_Market_Predictor |
|
import pandas as pd |
|
|
|
|
|
API_KEY = "QR8F9B7T6R2SWTAT" |
|
|
|
def fetch_alpha_vantage_data(api_key): |
|
url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol=IBM&interval=5min&apikey={api_key}' |
|
response = requests.get(url) |
|
alpha_vantage_data = response.json() |
|
return alpha_vantage_data |
|
|
|
def calculate_ichimoku_cloud(data): |
|
short_window = 9 |
|
long_window = 26 |
|
span_b_window = 52 |
|
displacement = 26 |
|
|
|
data['tenkan_sen'] = (data['high'].rolling(window=short_window).max() + data['low'].rolling(window=short_window).min()) / 2 |
|
data['kijun_sen'] = (data['high'].rolling(window=long_window).max() + data['low'].rolling(window=long_window).min()) / 2 |
|
data['senkou_span_a'] = ((data['tenkan_sen'] + data['kijun_sen']) / 2).shift(displacement) |
|
data['senkou_span_b'] = ((data['high'].rolling(window=span_b_window).max() + data['low'].rolling(window=span_b_window).min()) / 2).shift(displacement) |
|
|
|
return data |
|
|
|
def calculate_indicators(data): |
|
data = data.apply(pd.to_numeric, errors='coerce') |
|
|
|
data['Doji'] = abs(data['Close'] - data['open']) <= 0.01 * (data['high'] - data['low']) |
|
data['Inside'] = (data['high'] < data['high'].shift(1)) & (data['low'] > data['low'].shift(1)) |
|
|
|
data['MA5'] = data['Close'].rolling(window=5).mean() |
|
data['MA20'] = data['Close'].rolling(window=20).mean() |
|
|
|
data['26EMA'] = data['Close'].ewm(span=26).mean() |
|
data['12EMA'] = data['Close'].ewm(span=12).mean() |
|
data['MACD'] = data['12EMA'] - data['26EMA'] |
|
|
|
|
|
data = calculate_ichimoku_cloud(data) |
|
|
|
return data |
|
|
|
def main(): |
|
st.title("Stock Trend Predictor") |
|
|
|
api_key = API_KEY |
|
|
|
alpha_vantage_data = fetch_alpha_vantage_data(api_key) |
|
|
|
alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {}) |
|
df = pd.DataFrame(alpha_vantage_time_series).T |
|
df.index = pd.to_datetime(df.index) |
|
df = df.dropna(axis=0) |
|
|
|
df = df.rename(columns={'1. open': 'open', '2. high': 'high', '3. low': 'low', '4. close': 'Close', '5. volume': 'volume'}) |
|
|
|
df = calculate_indicators(df) |
|
|
|
my_market_predictor = Pandas_Market_Predictor(df) |
|
|
|
indicators = ["Doji", "Inside", "MA5", "MA20", "MACD", "tenkan_sen", "kijun_sen", "senkou_span_a", "senkou_span_b"] |
|
trend = my_market_predictor.Trend_Detection(indicators, 10) |
|
|
|
st.subheader("Predicted Trend:") |
|
st.write("Buy Trend :", trend['BUY']) |
|
st.write("Sell Trend :", trend['SELL']) |
|
st.write(f"Standard Deviation Percentage: {my_market_predictor.PERCENT_STD}%") |
|
|
|
del df |
|
|
|
if __name__ == "__main__": |
|
main() |