St / app.py
Geek7's picture
Update app.py
6f86b47 verified
raw
history blame
2.79 kB
import streamlit as st
import requests
from Pandas_Market_Predictor import Pandas_Market_Predictor
import pandas as pd
# Hard-coded API key for demonstration purposes
API_KEY = "QR8F9B7T6R2SWTAT"
def fetch_alpha_vantage_data(api_key):
url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol=IBM&interval=5min&apikey={api_key}'
response = requests.get(url)
alpha_vantage_data = response.json()
return alpha_vantage_data
def calculate_ichimoku_cloud(data):
short_window = 9
long_window = 26
span_b_window = 52
displacement = 26
data['tenkan_sen'] = (data['high'].rolling(window=short_window).max() + data['low'].rolling(window=short_window).min()) / 2
data['kijun_sen'] = (data['high'].rolling(window=long_window).max() + data['low'].rolling(window=long_window).min()) / 2
data['senkou_span_a'] = ((data['tenkan_sen'] + data['kijun_sen']) / 2).shift(displacement)
data['senkou_span_b'] = ((data['high'].rolling(window=span_b_window).max() + data['low'].rolling(window=span_b_window).min()) / 2).shift(displacement)
return data # Make sure to return the updated DataFrame
def calculate_indicators(data):
data = data.apply(pd.to_numeric, errors='coerce')
data['Doji'] = abs(data['Close'] - data['open']) <= 0.01 * (data['high'] - data['low'])
data['Inside'] = (data['high'] < data['high'].shift(1)) & (data['low'] > data['low'].shift(1))
data['MA5'] = data['Close'].rolling(window=5).mean()
data['MA20'] = data['Close'].rolling(window=20).mean()
data['26EMA'] = data['Close'].ewm(span=26).mean()
data['12EMA'] = data['Close'].ewm(span=12).mean()
data['MACD'] = data['12EMA'] - data['26EMA']
# Calculate Ichimoku Cloud
data = calculate_ichimoku_cloud(data)
return data
def main():
st.title("Stock Trend Predictor")
api_key = API_KEY
alpha_vantage_data = fetch_alpha_vantage_data(api_key)
alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {})
df = pd.DataFrame(alpha_vantage_time_series).T
df.index = pd.to_datetime(df.index)
df = df.dropna(axis=0)
df = df.rename(columns={'1. open': 'open', '2. high': 'high', '3. low': 'low', '4. close': 'Close', '5. volume': 'volume'})
df = calculate_indicators(df)
my_market_predictor = Pandas_Market_Predictor(df)
indicators = ["Doji", "Inside", "MA5", "MA20", "MACD", "tenkan_sen", "kijun_sen", "senkou_span_a", "senkou_span_b"]
trend = my_market_predictor.Trend_Detection(indicators, 10)
st.subheader("Predicted Trend:")
st.write("Buy Trend :", trend['BUY'])
st.write("Sell Trend :", trend['SELL'])
st.write(f"Standard Deviation Percentage: {my_market_predictor.PERCENT_STD}%")
del df
if __name__ == "__main__":
main()