St / app.py
Geek7's picture
Update app.py
d2bafef verified
raw
history blame
4.17 kB
import streamlit as st
from thronetrader import StrategicSignals
import requests
import pandas as pd
# Hard-coded API key for demonstration purposes
API_KEY = "QR8F9B7T6R2SWTAT"
def fetch_alpha_vantage_data(api_key, symbol):
url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={symbol}&interval=5min&apikey={api_key}'
response = requests.get(url)
alpha_vantage_data = response.json()
return alpha_vantage_data
def main():
st.title("Stock Trend Predictor")
# User input for stock symbol
symbol = st.text_input("Enter Stock Symbol (e.g., IBM):")
if not symbol:
st.warning("Please enter a valid stock symbol.")
st.stop()
# Use the hard-coded API key
api_key = API_KEY
# Fetch Alpha Vantage data
alpha_vantage_data = fetch_alpha_vantage_data(api_key, symbol)
# Extract relevant data from Alpha Vantage response
alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {})
df = pd.DataFrame(alpha_vantage_time_series).T
df.index = pd.to_datetime(df.index)
df = df.dropna(axis=0)
# Display the raw data
st.subheader("Raw Data:")
st.write(df)
if __name__ == "__main__":
main()
def main():
st.title("Strategic Trading Signals")
# Input for stock symbol
symbol = st.text_input("Enter stock symbol (e.g., AAPL):", "AAPL")
# Display strategic trading signals
strategic_signals = StrategicSignals(symbol=symbol)
st.subheader("Bollinger Bands Signals:")
bollinger_bands_signals = strategic_signals.get_bollinger_bands_signals()
st.write(bollinger_bands_signals)
st.subheader("Breakout Signals:")
breakout_signals = strategic_signals.get_breakout_signals()
st.write(breakout_signals)
st.subheader("Crossover Signals:")
crossover_signals = strategic_signals.get_crossover_signals()
st.write(crossover_signals)
st.subheader("MACD Signals:")
macd_signals = strategic_signals.get_macd_signals()
st.write(macd_signals)
st.subheader("RSI Signals:")
rsi_signals = strategic_signals.get_rsi_signals()
st.write(rsi_signals)
if __name__ == "__main__":
main()
def fetch_alpha_vantage_data(api_key, symbol):
url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={symbol}&interval=5min&apikey={api_key}'
response = requests.get(url)
alpha_vantage_data = response.json()
return alpha_vantage_data
def calculate_indicators(data):
# Convert all columns to numeric
data = data.apply(pd.to_numeric, errors='coerce')
# Example: Simple condition for doji and inside
data['Doji'] = abs(data['Close'] - data['Open']) <= 0.01 * (data['High'] - data['Low'])
data['Inside'] = (data['High'] < data['High'].shift(1)) & (data['Low'] > data['Low'].shift(1))
return data
def main():
st.title("AI Stock Trend Predictor")
# User input for stock symbol
symbol = st.text_input("Enter Stock Symbol (e.g., IBM):",key="symbol")
if not symbol:
st.warning("Please enter a valid stock symbol.")
st.stop()
# Use the hard-coded API key
api_key = API_KEY
# Fetch Alpha Vantage data
alpha_vantage_data = fetch_alpha_vantage_data(api_key, symbol)
# Extract relevant data from Alpha Vantage response
alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {})
df = pd.DataFrame(alpha_vantage_time_series).T
df.index = pd.to_datetime(df.index)
df = df.dropna(axis=0)
# Rename columns
df = df.rename(columns={'1. open': 'Open', '2. high': 'High', '3. low': 'Low', '4. close': 'Close', '5. volume': 'Volume'})
# Calculate indicators
df = calculate_indicators(df)
# Create predictor
my_market_predictor = Pandas_Market_Predictor(df)
# Predict Trend
indicators = ["Doji", "Inside"]
trend = my_market_predictor.Trend_Detection(indicators, 10)
# Display results
st.subheader("Predicted Trend:")
st.write("Buy Trend :", trend['BUY'])
st.write("Sell Trend :", trend['SELL'])
# Delete the DataFrame to release memory
del df
if __name__ == "__main__":
main()