|
import streamlit as st |
|
from thronetrader import StrategicSignals |
|
import requests |
|
import pandas as pd |
|
|
|
|
|
|
|
API_KEY = "QR8F9B7T6R2SWTAT" |
|
|
|
def fetch_alpha_vantage_data(api_key, symbol): |
|
url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={symbol}&interval=5min&apikey={api_key}' |
|
response = requests.get(url) |
|
alpha_vantage_data = response.json() |
|
return alpha_vantage_data |
|
|
|
def main(): |
|
st.title("Stock Trend Predictor") |
|
|
|
|
|
symbol = st.text_input("Enter Stock Symbol (e.g., IBM):") |
|
|
|
if not symbol: |
|
st.warning("Please enter a valid stock symbol.") |
|
st.stop() |
|
|
|
|
|
api_key = API_KEY |
|
|
|
|
|
alpha_vantage_data = fetch_alpha_vantage_data(api_key, symbol) |
|
|
|
|
|
alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {}) |
|
df = pd.DataFrame(alpha_vantage_time_series).T |
|
df.index = pd.to_datetime(df.index) |
|
df = df.dropna(axis=0) |
|
|
|
|
|
st.subheader("Raw Data:") |
|
st.write(df) |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|
|
def main(): |
|
st.title("Strategic Trading Signals") |
|
|
|
|
|
symbol = st.text_input("Enter stock symbol (e.g., AAPL):", "AAPL") |
|
|
|
|
|
strategic_signals = StrategicSignals(symbol=symbol) |
|
|
|
st.subheader("Bollinger Bands Signals:") |
|
bollinger_bands_signals = strategic_signals.get_bollinger_bands_signals() |
|
st.write(bollinger_bands_signals) |
|
|
|
st.subheader("Breakout Signals:") |
|
breakout_signals = strategic_signals.get_breakout_signals() |
|
st.write(breakout_signals) |
|
|
|
st.subheader("Crossover Signals:") |
|
crossover_signals = strategic_signals.get_crossover_signals() |
|
st.write(crossover_signals) |
|
|
|
st.subheader("MACD Signals:") |
|
macd_signals = strategic_signals.get_macd_signals() |
|
st.write(macd_signals) |
|
|
|
st.subheader("RSI Signals:") |
|
rsi_signals = strategic_signals.get_rsi_signals() |
|
st.write(rsi_signals) |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|
|
|
|
|
|
def fetch_alpha_vantage_data(api_key, symbol): |
|
url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={symbol}&interval=5min&apikey={api_key}' |
|
response = requests.get(url) |
|
alpha_vantage_data = response.json() |
|
return alpha_vantage_data |
|
|
|
def calculate_indicators(data): |
|
|
|
data = data.apply(pd.to_numeric, errors='coerce') |
|
|
|
|
|
data['Doji'] = abs(data['Close'] - data['Open']) <= 0.01 * (data['High'] - data['Low']) |
|
data['Inside'] = (data['High'] < data['High'].shift(1)) & (data['Low'] > data['Low'].shift(1)) |
|
return data |
|
|
|
def main(): |
|
st.title("AI Stock Trend Predictor") |
|
|
|
|
|
symbol = st.text_input("Enter Stock Symbol (e.g., IBM):",key="symbol") |
|
|
|
if not symbol: |
|
st.warning("Please enter a valid stock symbol.") |
|
st.stop() |
|
|
|
|
|
api_key = API_KEY |
|
|
|
|
|
alpha_vantage_data = fetch_alpha_vantage_data(api_key, symbol) |
|
|
|
|
|
alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {}) |
|
df = pd.DataFrame(alpha_vantage_time_series).T |
|
df.index = pd.to_datetime(df.index) |
|
df = df.dropna(axis=0) |
|
|
|
|
|
df = df.rename(columns={'1. open': 'Open', '2. high': 'High', '3. low': 'Low', '4. close': 'Close', '5. volume': 'Volume'}) |
|
|
|
|
|
df = calculate_indicators(df) |
|
|
|
|
|
my_market_predictor = Pandas_Market_Predictor(df) |
|
|
|
|
|
indicators = ["Doji", "Inside"] |
|
trend = my_market_predictor.Trend_Detection(indicators, 10) |
|
|
|
|
|
st.subheader("Predicted Trend:") |
|
st.write("Buy Trend :", trend['BUY']) |
|
st.write("Sell Trend :", trend['SELL']) |
|
|
|
|
|
del df |
|
|
|
if __name__ == "__main__": |
|
main() |