Geek7 commited on
Commit
12a17c8
·
verified ·
1 Parent(s): 22781d2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +71 -18
app.py CHANGED
@@ -1,27 +1,80 @@
1
- import yfinance as yf
2
  import streamlit as st
 
 
3
  import pandas as pd
4
 
5
- # Function to fetch historical stock data
6
- def fetch_stock_data(symbol, start_date, end_date):
7
- data = yf.download(symbol, start=start_date, end=end_date)
8
- return data
9
-
10
- # Streamlit UI
11
  def main():
12
- st.title("Stock Data Viewer")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
- symbol = st.text_input("Enter Stock Symbol (e.g., AAPL):")
15
- start_date = st.date_input("Select Start Date:")
16
- end_date = st.date_input("Select End Date:")
17
 
18
- if st.button("Fetch Stock Data"):
19
- # Fetch stock data
20
- stock_data = fetch_stock_data(symbol, start_date, end_date)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
- # Display the raw stock data
23
- st.subheader("Raw Stock Data:")
24
- st.write(stock_data)
 
 
 
 
25
 
26
- if __name__ == '__main__':
27
  main()
 
 
1
  import streamlit as st
2
+ from thronetrader import StrategicSignals
3
+ from thronetrader.helper.squire import classify # Import your classification method
4
  import pandas as pd
5
 
 
 
 
 
 
 
6
  def main():
7
+ st.title("Strategic Trading Signals")
8
+
9
+ # Input for stock symbol
10
+ symbol = st.text_input("Enter stock symbol (e.g., AAPL):", "AAPL")
11
+
12
+ # Fetch Alpha Vantage data
13
+ alpha_vantage_data = fetch_alpha_vantage_data(symbol)
14
+
15
+ # Extract relevant data from Alpha Vantage response
16
+ alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {})
17
+ df = pd.DataFrame(alpha_vantage_time_series).T
18
+ df.index = pd.to_datetime(df.index)
19
+ df = df.dropna(axis=0)
20
+
21
+ # Rename columns
22
+ df = df.rename(columns={'1. open': 'open', '2. high': 'high', '3. low': 'low', '4. close': 'Close', '5. volume': 'volume'})
23
+
24
+ # Calculate indicators
25
+ df = calculate_indicators(df)
26
+
27
+ # Display strategic trading signals
28
+ strategic_signals = StrategicSignals(df)
29
 
30
+ st.subheader("Bollinger Bands Signals:")
31
+ bollinger_bands_signals = strategic_signals.get_bollinger_bands_signals()
32
+ display_signals(bollinger_bands_signals)
33
 
34
+ st.subheader("Breakout Signals:")
35
+ breakout_signals = strategic_signals.get_breakout_signals()
36
+ display_signals(breakout_signals)
37
+
38
+ st.subheader("Crossover Signals:")
39
+ crossover_signals = strategic_signals.get_crossover_signals()
40
+ display_signals(crossover_signals)
41
+
42
+ st.subheader("MACD Signals:")
43
+ macd_signals = strategic_signals.get_macd_signals()
44
+ display_signals(macd_signals)
45
+
46
+ st.subheader("RSI Signals:")
47
+ rsi_signals = strategic_signals.get_rsi_signals()
48
+ display_signals(rsi_signals)
49
+
50
+ # Example of using your classify method
51
+ classification_result = classify(df, logger) # Pass your DataFrame and logger
52
+ st.subheader("Classification Result:")
53
+ st.write(classification_result)
54
+
55
+ def fetch_alpha_vantage_data(symbol):
56
+ api_key = "QR8F9B7T6R2SWTAT"
57
+ url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={symbol}&interval=5min&apikey={api_key}'
58
+ response = requests.get(url)
59
+ alpha_vantage_data = response.json()
60
+ return alpha_vantage_data
61
+
62
+ def calculate_indicators(data):
63
+ # Convert all columns to numeric
64
+ data = data.apply(pd.to_numeric, errors='coerce')
65
+
66
+ # Example: Simple condition for doji and inside
67
+ data['Doji'] = abs(data['Close'] - data['open']) <= 0.01 * (data['high'] - data['low'])
68
+ data['Inside'] = (data['high'] < data['high'].shift(1)) & (data['low'] > data['low'].shift(1))
69
+ return data
70
 
71
+ def display_signals(signals):
72
+ for signal in signals:
73
+ if isinstance(signal, dict):
74
+ st.write(f"Date: {signal.get('date', 'N/A')}")
75
+ st.write(f"Signal: {signal.get('signal', 'N/A')}")
76
+ else:
77
+ st.write("Invalid signal format.")
78
 
79
+ if __name__ == "__main__":
80
  main()