Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,7 @@
|
|
1 |
import streamlit as st
|
2 |
from thronetrader import StrategicSignals
|
|
|
|
|
3 |
|
4 |
def main():
|
5 |
st.title("Strategic Trading Signals")
|
@@ -7,8 +9,23 @@ def main():
|
|
7 |
# Input for stock symbol
|
8 |
symbol = st.text_input("Enter stock symbol (e.g., AAPL):", "AAPL")
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
# Display strategic trading signals
|
11 |
-
strategic_signals = StrategicSignals(
|
12 |
|
13 |
st.subheader("Bollinger Bands Signals:")
|
14 |
bollinger_bands_signals = strategic_signals.get_bollinger_bands_signals()
|
@@ -30,6 +47,27 @@ def main():
|
|
30 |
rsi_signals = strategic_signals.get_rsi_signals()
|
31 |
display_signals(rsi_signals)
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
def display_signals(signals):
|
34 |
for signal in signals:
|
35 |
if isinstance(signal, dict):
|
|
|
1 |
import streamlit as st
|
2 |
from thronetrader import StrategicSignals
|
3 |
+
from thronetrader.helper.squire import classify # Import your classification method
|
4 |
+
import pandas as pd
|
5 |
|
6 |
def main():
|
7 |
st.title("Strategic Trading Signals")
|
|
|
9 |
# Input for stock symbol
|
10 |
symbol = st.text_input("Enter stock symbol (e.g., AAPL):", "AAPL")
|
11 |
|
12 |
+
# Fetch Alpha Vantage data
|
13 |
+
alpha_vantage_data = fetch_alpha_vantage_data(symbol)
|
14 |
+
|
15 |
+
# Extract relevant data from Alpha Vantage response
|
16 |
+
alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {})
|
17 |
+
df = pd.DataFrame(alpha_vantage_time_series).T
|
18 |
+
df.index = pd.to_datetime(df.index)
|
19 |
+
df = df.dropna(axis=0)
|
20 |
+
|
21 |
+
# Rename columns
|
22 |
+
df = df.rename(columns={'1. open': 'open', '2. high': 'high', '3. low': 'low', '4. close': 'Close', '5. volume': 'volume'})
|
23 |
+
|
24 |
+
# Calculate indicators
|
25 |
+
df = calculate_indicators(df)
|
26 |
+
|
27 |
# Display strategic trading signals
|
28 |
+
strategic_signals = StrategicSignals(df)
|
29 |
|
30 |
st.subheader("Bollinger Bands Signals:")
|
31 |
bollinger_bands_signals = strategic_signals.get_bollinger_bands_signals()
|
|
|
47 |
rsi_signals = strategic_signals.get_rsi_signals()
|
48 |
display_signals(rsi_signals)
|
49 |
|
50 |
+
# Example of using your classify method
|
51 |
+
classification_result = classify(df, logger) # Pass your DataFrame and logger
|
52 |
+
st.subheader("Classification Result:")
|
53 |
+
st.write(classification_result)
|
54 |
+
|
55 |
+
def fetch_alpha_vantage_data(symbol):
|
56 |
+
api_key = "QR8F9B7T6R2SWTAT"
|
57 |
+
url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={symbol}&interval=5min&apikey={api_key}'
|
58 |
+
response = requests.get(url)
|
59 |
+
alpha_vantage_data = response.json()
|
60 |
+
return alpha_vantage_data
|
61 |
+
|
62 |
+
def calculate_indicators(data):
|
63 |
+
# Convert all columns to numeric
|
64 |
+
data = data.apply(pd.to_numeric, errors='coerce')
|
65 |
+
|
66 |
+
# Example: Simple condition for doji and inside
|
67 |
+
data['Doji'] = abs(data['Close'] - data['open']) <= 0.01 * (data['high'] - data['low'])
|
68 |
+
data['Inside'] = (data['high'] < data['high'].shift(1)) & (data['low'] > data['low'].shift(1))
|
69 |
+
return data
|
70 |
+
|
71 |
def display_signals(signals):
|
72 |
for signal in signals:
|
73 |
if isinstance(signal, dict):
|