Update app.py
Browse files
app.py
CHANGED
@@ -1,54 +1,86 @@
|
|
1 |
import streamlit as st
|
2 |
-
import
|
3 |
import pandas as pd
|
|
|
|
|
|
|
|
|
4 |
|
5 |
# Hard-coded API key for demonstration purposes
|
6 |
API_KEY = "QR8F9B7T6R2SWTAT"
|
7 |
|
8 |
def fetch_alpha_vantage_data(api_key, symbol):
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
return alpha_vantage_data
|
15 |
-
except requests.RequestException as e:
|
16 |
-
st.error(f"Error fetching data: {e}")
|
17 |
-
return None
|
18 |
|
19 |
-
def
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
|
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
st.stop()
|
28 |
|
29 |
-
#
|
30 |
-
|
31 |
|
32 |
# Fetch Alpha Vantage data
|
33 |
-
alpha_vantage_data = fetch_alpha_vantage_data(
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
if __name__ == "__main__":
|
54 |
main()
|
|
|
1 |
import streamlit as st
|
2 |
+
import yfinance as yf
|
3 |
import pandas as pd
|
4 |
+
from thronetrader import StrategicSignals
|
5 |
+
from Pandas_Market_Predictor import Pandas_Market_Predictor
|
6 |
+
|
7 |
+
|
8 |
|
9 |
# Hard-coded API key for demonstration purposes
|
10 |
API_KEY = "QR8F9B7T6R2SWTAT"
|
11 |
|
12 |
def fetch_alpha_vantage_data(api_key, symbol):
|
13 |
+
|
14 |
+
url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={symbol}&interval=5min&apikey={api_key}'
|
15 |
+
response = requests.get(url)
|
16 |
+
alpha_vantage_data = response.json()
|
17 |
+
return alpha_vantage_data
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
def calculate_indicators(data):
|
20 |
+
# Convert all columns to numeric
|
21 |
+
data = data.apply(pd.to_numeric, errors='coerce')
|
22 |
+
|
23 |
+
# Example: Simple condition for doji and inside
|
24 |
+
data['Doji'] = abs(data['Close'] - data['Open']) <= 0.01 * (data['High'] - data['Low'])
|
25 |
+
data['Inside'] = (data['High'] < data['High'].shift(1)) & (data['Low'] > data['Low'].shift(1))
|
26 |
+
return data
|
27 |
|
28 |
+
def display_signals(signal_type, signals):
|
29 |
+
st.subheader(f"{signal_type} Signals:")
|
30 |
+
st.write(signals)
|
31 |
|
32 |
+
def main():
|
33 |
+
st.title("Stock Trend Predictor")
|
|
|
34 |
|
35 |
+
# Input for stock symbol
|
36 |
+
symbol = st.text_input("Enter stock symbol (e.g., AAPL):", "AAPL")
|
37 |
|
38 |
# Fetch Alpha Vantage data
|
39 |
+
alpha_vantage_data = fetch_alpha_vantage_data(API_KEY, symbol)
|
40 |
+
|
41 |
+
# Extract relevant data from Alpha Vantage response
|
42 |
+
alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {})
|
43 |
+
df = pd.DataFrame(alpha_vantage_time_series).T
|
44 |
+
df.index = pd.to_datetime(df.index)
|
45 |
+
df = df.dropna(axis=0)
|
46 |
+
|
47 |
+
# Rename columns
|
48 |
+
df = df.rename(columns={'1. open': 'Open', '2. high': 'High', '3. low': 'Low', '4. close': 'Close', '5. volume': 'Volume'})
|
49 |
+
|
50 |
+
# Calculate indicators
|
51 |
+
df = calculate_indicators(df)
|
52 |
+
|
53 |
+
# Display stock trading signals
|
54 |
+
strategic_signals = StrategicSignals(symbol=symbol)
|
55 |
+
|
56 |
+
# Display loading message during processing
|
57 |
+
with st.spinner("Predicting signals using Strategic Indicators..."):
|
58 |
+
# Display signals
|
59 |
+
st.subheader(":orange[Strategic Indicators Trend Prediction]")
|
60 |
+
display_signals("Bollinger Bands", strategic_signals.get_bollinger_bands_signals())
|
61 |
+
display_signals("Breakout", strategic_signals.get_breakout_signals())
|
62 |
+
display_signals("Crossover", strategic_signals.get_crossover_signals())
|
63 |
+
display_signals("MACD", strategic_signals.get_macd_signals())
|
64 |
+
display_signals("RSI", strategic_signals.get_rsi_signals())
|
65 |
+
|
66 |
+
# Create predictor
|
67 |
+
my_market_predictor = Pandas_Market_Predictor(df)
|
68 |
+
|
69 |
+
# Predict Trend
|
70 |
+
indicators = ["Doji", "Inside"]
|
71 |
+
|
72 |
+
# Display loading message during prediction
|
73 |
+
with st.spinner("Predicting trend using AI ...."):
|
74 |
+
# Predict trend
|
75 |
+
trend = my_market_predictor.Trend_Detection(indicators, 10)
|
76 |
+
|
77 |
+
# Display results
|
78 |
+
st.subheader(":orange[AI Trend Prediction]")
|
79 |
+
st.write("Buy Trend :", trend['BUY'])
|
80 |
+
st.write("Sell Trend :", trend['SELL'])
|
81 |
+
|
82 |
+
# Delete the DataFrame to release memory
|
83 |
+
del df
|
84 |
|
85 |
if __name__ == "__main__":
|
86 |
main()
|