Update app.py
Browse files
app.py
CHANGED
@@ -43,13 +43,20 @@ def main():
|
|
43 |
if __name__ == "__main__":
|
44 |
main()
|
45 |
|
|
|
46 |
# Hard-coded API key for demonstration purposes
|
47 |
API_KEY = "QR8F9B7T6R2SWTAT"
|
48 |
|
49 |
-
def fetch_alpha_vantage_data(api_key, symbol):
|
50 |
url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={symbol}&interval=5min&apikey={api_key}'
|
51 |
response = requests.get(url)
|
52 |
alpha_vantage_data = response.json()
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
return alpha_vantage_data
|
54 |
|
55 |
def calculate_indicators(data):
|
@@ -66,13 +73,14 @@ def display_signals(signal_type, signals):
|
|
66 |
st.write(signals)
|
67 |
|
68 |
def main():
|
69 |
-
st.title("
|
70 |
|
71 |
# Input for stock symbol
|
72 |
symbol = st.text_input("Enter stock symbol (e.g., AAPL):", "AAPL")
|
73 |
|
74 |
# Fetch Alpha Vantage data
|
75 |
-
|
|
|
76 |
|
77 |
# Extract relevant data from Alpha Vantage response
|
78 |
alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {})
|
@@ -83,18 +91,33 @@ def main():
|
|
83 |
# Rename columns
|
84 |
df = df.rename(columns={'1. open': 'Open', '2. high': 'High', '3. low': 'Low', '4. close': 'Close', '5. volume': 'Volume'})
|
85 |
|
|
|
|
|
|
|
|
|
|
|
86 |
# Calculate indicators
|
87 |
df = calculate_indicators(df)
|
88 |
|
89 |
# Display stock trading signals
|
90 |
strategic_signals = StrategicSignals(symbol=symbol)
|
91 |
|
|
|
|
|
|
|
|
|
|
|
92 |
display_signals("Bollinger Bands", strategic_signals.get_bollinger_bands_signals())
|
93 |
display_signals("Breakout", strategic_signals.get_breakout_signals())
|
94 |
display_signals("Crossover", strategic_signals.get_crossover_signals())
|
95 |
display_signals("MACD", strategic_signals.get_macd_signals())
|
96 |
display_signals("RSI", strategic_signals.get_rsi_signals())
|
97 |
|
|
|
|
|
|
|
|
|
|
|
98 |
# Create predictor
|
99 |
my_market_predictor = Pandas_Market_Predictor(df)
|
100 |
|
@@ -102,13 +125,16 @@ def main():
|
|
102 |
indicators = ["Doji", "Inside"]
|
103 |
trend = my_market_predictor.Trend_Detection(indicators, 10)
|
104 |
|
105 |
-
st.title("AI Stock Trend Predictor")
|
106 |
-
|
107 |
# Display trend predictions
|
108 |
st.subheader("Predicted Trend:")
|
109 |
st.write("Buy Trend :", trend['BUY'])
|
110 |
st.write("Sell Trend :", trend['SELL'])
|
111 |
|
|
|
|
|
|
|
|
|
|
|
112 |
# Delete the DataFrame to release memory
|
113 |
del df
|
114 |
|
|
|
43 |
if __name__ == "__main__":
|
44 |
main()
|
45 |
|
46 |
+
|
47 |
# Hard-coded API key for demonstration purposes
|
48 |
API_KEY = "QR8F9B7T6R2SWTAT"
|
49 |
|
50 |
+
def fetch_alpha_vantage_data(api_key, symbol, progress_bar):
|
51 |
url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={symbol}&interval=5min&apikey={api_key}'
|
52 |
response = requests.get(url)
|
53 |
alpha_vantage_data = response.json()
|
54 |
+
|
55 |
+
# Simulate progress with a fake sleep
|
56 |
+
for percent_complete in range(0, 101, 10):
|
57 |
+
progress_bar.progress(percent_complete)
|
58 |
+
st.experimental_rerun()
|
59 |
+
|
60 |
return alpha_vantage_data
|
61 |
|
62 |
def calculate_indicators(data):
|
|
|
73 |
st.write(signals)
|
74 |
|
75 |
def main():
|
76 |
+
st.title("AI Stock Trend Predictor")
|
77 |
|
78 |
# Input for stock symbol
|
79 |
symbol = st.text_input("Enter stock symbol (e.g., AAPL):", "AAPL")
|
80 |
|
81 |
# Fetch Alpha Vantage data
|
82 |
+
progress_bar_fetch_data = st.progress(0)
|
83 |
+
alpha_vantage_data = fetch_alpha_vantage_data(API_KEY, symbol, progress_bar_fetch_data)
|
84 |
|
85 |
# Extract relevant data from Alpha Vantage response
|
86 |
alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {})
|
|
|
91 |
# Rename columns
|
92 |
df = df.rename(columns={'1. open': 'Open', '2. high': 'High', '3. low': 'Low', '4. close': 'Close', '5. volume': 'Volume'})
|
93 |
|
94 |
+
# Simulate progress with a fake sleep
|
95 |
+
for percent_complete in range(0, 101, 10):
|
96 |
+
progress_bar_process_data = st.progress(percent_complete)
|
97 |
+
st.experimental_rerun()
|
98 |
+
|
99 |
# Calculate indicators
|
100 |
df = calculate_indicators(df)
|
101 |
|
102 |
# Display stock trading signals
|
103 |
strategic_signals = StrategicSignals(symbol=symbol)
|
104 |
|
105 |
+
# Simulate progress with a fake sleep
|
106 |
+
for percent_complete in range(0, 101, 10):
|
107 |
+
progress_bar_display_signals = st.progress(percent_complete)
|
108 |
+
st.experimental_rerun()
|
109 |
+
|
110 |
display_signals("Bollinger Bands", strategic_signals.get_bollinger_bands_signals())
|
111 |
display_signals("Breakout", strategic_signals.get_breakout_signals())
|
112 |
display_signals("Crossover", strategic_signals.get_crossover_signals())
|
113 |
display_signals("MACD", strategic_signals.get_macd_signals())
|
114 |
display_signals("RSI", strategic_signals.get_rsi_signals())
|
115 |
|
116 |
+
# Simulate progress with a fake sleep
|
117 |
+
for percent_complete in range(0, 101, 10):
|
118 |
+
progress_bar_predict_trend = st.progress(percent_complete)
|
119 |
+
st.experimental_rerun()
|
120 |
+
|
121 |
# Create predictor
|
122 |
my_market_predictor = Pandas_Market_Predictor(df)
|
123 |
|
|
|
125 |
indicators = ["Doji", "Inside"]
|
126 |
trend = my_market_predictor.Trend_Detection(indicators, 10)
|
127 |
|
|
|
|
|
128 |
# Display trend predictions
|
129 |
st.subheader("Predicted Trend:")
|
130 |
st.write("Buy Trend :", trend['BUY'])
|
131 |
st.write("Sell Trend :", trend['SELL'])
|
132 |
|
133 |
+
# Simulate progress with a fake sleep
|
134 |
+
for percent_complete in range(0, 101, 10):
|
135 |
+
progress_bar_complete = st.progress(percent_complete)
|
136 |
+
st.experimental_rerun()
|
137 |
+
|
138 |
# Delete the DataFrame to release memory
|
139 |
del df
|
140 |
|