Update app.py
Browse filesimport streamlit as st
from thronetrader import StrategicSignals
def main():
st.title("Strategic Trading Signals")
# Input for stock symbol
symbol = st.text_input("Enter stock symbol (e.g., AAPL):", "AAPL")
# Display strategic trading signals
strategic_signals = StrategicSignals(symbol=symbol)
st.subheader("Bollinger Bands Signals:")
bollinger_bands_signals = strategic_signals.get_bollinger_bands_signals()
display_signals(bollinger_bands_signals)
st.subheader("Breakout Signals:")
breakout_signals = strategic_signals.get_breakout_signals()
display_signals(breakout_signals)
st.subheader("Crossover Signals:")
crossover_signals = strategic_signals.get_crossover_signals()
display_signals(crossover_signals)
st.subheader("MACD Signals:")
macd_signals = strategic_signals.get_macd_signals()
display_signals(macd_signals)
st.subheader("RSI Signals:")
rsi_signals = strategic_signals.get_rsi_signals()
display_signals(rsi_signals)
def display_signals(signals):
for signal in signals:
if isinstance(signal, dict):
st.write(f"Date: {signal.get('date', 'N/A')}")
st.write(f"Signal: {signal.get('signal', 'N/A')}")
else:
st.write("Invalid signal format.")
if __name__ == "__main__":
main()
@@ -1,81 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import requests
|
3 |
-
from thronetrader import StrategicSignals
|
4 |
-
from thronetrader.helper.squire import classify # Import your classification method
|
5 |
-
import pandas as pd
|
6 |
-
|
7 |
-
def main():
|
8 |
-
st.title("Strategic Trading Signals")
|
9 |
-
|
10 |
-
# Input for stock symbol
|
11 |
-
symbol = st.text_input("Enter stock symbol (e.g., AAPL):", "AAPL")
|
12 |
-
|
13 |
-
# Fetch Alpha Vantage data
|
14 |
-
alpha_vantage_data = fetch_alpha_vantage_data(symbol)
|
15 |
-
|
16 |
-
# Extract relevant data from Alpha Vantage response
|
17 |
-
alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {})
|
18 |
-
df = pd.DataFrame(alpha_vantage_time_series).T
|
19 |
-
df.index = pd.to_datetime(df.index)
|
20 |
-
df = df.dropna(axis=0)
|
21 |
-
|
22 |
-
# Rename columns
|
23 |
-
df = df.rename(columns={'1. open': 'open', '2. high': 'high', '3. low': 'low', '4. close': 'Close', '5. volume': 'volume'})
|
24 |
-
|
25 |
-
# Calculate indicators
|
26 |
-
df = calculate_indicators(df)
|
27 |
-
|
28 |
-
# Display strategic trading signals
|
29 |
-
strategic_signals = StrategicSignals(df)
|
30 |
-
|
31 |
-
st.subheader("Bollinger Bands Signals:")
|
32 |
-
bollinger_bands_signals = strategic_signals.get_bollinger_bands_signals()
|
33 |
-
display_signals(bollinger_bands_signals)
|
34 |
-
|
35 |
-
st.subheader("Breakout Signals:")
|
36 |
-
breakout_signals = strategic_signals.get_breakout_signals()
|
37 |
-
display_signals(breakout_signals)
|
38 |
-
|
39 |
-
st.subheader("Crossover Signals:")
|
40 |
-
crossover_signals = strategic_signals.get_crossover_signals()
|
41 |
-
display_signals(crossover_signals)
|
42 |
-
|
43 |
-
st.subheader("MACD Signals:")
|
44 |
-
macd_signals = strategic_signals.get_macd_signals()
|
45 |
-
display_signals(macd_signals)
|
46 |
-
|
47 |
-
st.subheader("RSI Signals:")
|
48 |
-
rsi_signals = strategic_signals.get_rsi_signals()
|
49 |
-
display_signals(rsi_signals)
|
50 |
-
|
51 |
-
# Example of using your classify method
|
52 |
-
classification_result = classify(df, logger) # Pass your DataFrame and logger
|
53 |
-
st.subheader("Classification Result:")
|
54 |
-
st.write(classification_result)
|
55 |
-
|
56 |
-
def fetch_alpha_vantage_data(symbol):
|
57 |
-
api_key = "QR8F9B7T6R2SWTAT"
|
58 |
-
url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={symbol}&interval=5min&apikey={api_key}'
|
59 |
-
response = requests.get(url)
|
60 |
-
alpha_vantage_data = response.json()
|
61 |
-
return alpha_vantage_data
|
62 |
-
|
63 |
-
def calculate_indicators(data):
|
64 |
-
# Convert all columns to numeric
|
65 |
-
data = data.apply(pd.to_numeric, errors='coerce')
|
66 |
-
|
67 |
-
# Example: Simple condition for doji and inside
|
68 |
-
data['Doji'] = abs(data['Close'] - data['open']) <= 0.01 * (data['high'] - data['low'])
|
69 |
-
data['Inside'] = (data['high'] < data['high'].shift(1)) & (data['low'] > data['low'].shift(1))
|
70 |
-
return data
|
71 |
-
|
72 |
-
def display_signals(signals):
|
73 |
-
for signal in signals:
|
74 |
-
if isinstance(signal, dict):
|
75 |
-
st.write(f"Date: {signal.get('date', 'N/A')}")
|
76 |
-
st.write(f"Signal: {signal.get('signal', 'N/A')}")
|
77 |
-
else:
|
78 |
-
st.write("Invalid signal format.")
|
79 |
-
|
80 |
-
if __name__ == "__main__":
|
81 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|