Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import streamlit as st
|
2 |
import requests
|
3 |
-
from Pandas_Market_Predictor import Pandas_Market_Predictor
|
4 |
import pandas as pd
|
5 |
|
6 |
# Hard-coded API key for demonstration purposes
|
@@ -12,16 +11,6 @@ def fetch_alpha_vantage_data(api_key):
|
|
12 |
alpha_vantage_data = response.json()
|
13 |
return alpha_vantage_data
|
14 |
|
15 |
-
def calculate_indicators(data):
|
16 |
-
# Convert relevant columns to numeric
|
17 |
-
numeric_columns = ['4. close', '1. open', '2. high', '3. low']
|
18 |
-
data[numeric_columns] = data[numeric_columns].apply(pd.to_numeric, errors='coerce')
|
19 |
-
|
20 |
-
# Example: Simple condition for doji and inside
|
21 |
-
data['Doji'] = abs(data['4. close'] - data['1. open']) <= 0.01 * (data['2. high'] - data['3. low'])
|
22 |
-
data['Inside'] = (data['2. high'] < data['3. high']) & (data['2. low'] > data['3. low'])
|
23 |
-
return data
|
24 |
-
|
25 |
def main():
|
26 |
st.title("Stock Trend Predictor")
|
27 |
|
@@ -37,24 +26,12 @@ def main():
|
|
37 |
df.index = pd.to_datetime(df.index)
|
38 |
df = df.dropna(axis=0)
|
39 |
|
40 |
-
#
|
41 |
-
|
42 |
-
|
43 |
-
# Create predictor
|
44 |
-
my_market_predictor = Pandas_Market_Predictor(df)
|
45 |
-
|
46 |
-
# Predict Trend
|
47 |
-
indicators = ["Doji", "Inside"]
|
48 |
-
trend = my_market_predictor.Trend_Detection(indicators, 10)
|
49 |
-
|
50 |
-
# Display results
|
51 |
-
st.subheader("Predicted Trend:")
|
52 |
-
st.write("Buy Trend :", trend['BUY'])
|
53 |
-
st.write("Sell Trend :", trend['SELL'])
|
54 |
-
st.write(f"Standard Deviation Percentage: {my_market_predictor.PERCENT_STD}%")
|
55 |
|
56 |
-
#
|
57 |
-
|
58 |
|
59 |
if __name__ == "__main__":
|
60 |
main()
|
|
|
1 |
import streamlit as st
|
2 |
import requests
|
|
|
3 |
import pandas as pd
|
4 |
|
5 |
# Hard-coded API key for demonstration purposes
|
|
|
11 |
alpha_vantage_data = response.json()
|
12 |
return alpha_vantage_data
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
def main():
|
15 |
st.title("Stock Trend Predictor")
|
16 |
|
|
|
26 |
df.index = pd.to_datetime(df.index)
|
27 |
df = df.dropna(axis=0)
|
28 |
|
29 |
+
# Print DataFrame for observation
|
30 |
+
st.subheader("Raw Data:")
|
31 |
+
st.write(df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
# Uncomment the next line if you want to stop the execution here to observe the data
|
34 |
+
# st.stop()
|
35 |
|
36 |
if __name__ == "__main__":
|
37 |
main()
|