Geek7 commited on
Commit
67bdd5a
·
verified ·
1 Parent(s): 6316d4d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -28
app.py CHANGED
@@ -1,6 +1,5 @@
1
  import streamlit as st
2
  import requests
3
- from Pandas_Market_Predictor import Pandas_Market_Predictor
4
  import pandas as pd
5
 
6
  # Hard-coded API key for demonstration purposes
@@ -12,16 +11,6 @@ def fetch_alpha_vantage_data(api_key):
12
  alpha_vantage_data = response.json()
13
  return alpha_vantage_data
14
 
15
- def calculate_indicators(data):
16
- # Convert relevant columns to numeric
17
- numeric_columns = ['4. close', '1. open', '2. high', '3. low']
18
- data[numeric_columns] = data[numeric_columns].apply(pd.to_numeric, errors='coerce')
19
-
20
- # Example: Simple condition for doji and inside
21
- data['Doji'] = abs(data['4. close'] - data['1. open']) <= 0.01 * (data['2. high'] - data['3. low'])
22
- data['Inside'] = (data['2. high'] < data['3. high']) & (data['2. low'] > data['3. low'])
23
- return data
24
-
25
  def main():
26
  st.title("Stock Trend Predictor")
27
 
@@ -37,24 +26,12 @@ def main():
37
  df.index = pd.to_datetime(df.index)
38
  df = df.dropna(axis=0)
39
 
40
- # Calculate indicators
41
- df = calculate_indicators(df)
42
-
43
- # Create predictor
44
- my_market_predictor = Pandas_Market_Predictor(df)
45
-
46
- # Predict Trend
47
- indicators = ["Doji", "Inside"]
48
- trend = my_market_predictor.Trend_Detection(indicators, 10)
49
-
50
- # Display results
51
- st.subheader("Predicted Trend:")
52
- st.write("Buy Trend :", trend['BUY'])
53
- st.write("Sell Trend :", trend['SELL'])
54
- st.write(f"Standard Deviation Percentage: {my_market_predictor.PERCENT_STD}%")
55
 
56
- # Delete the DataFrame to release memory
57
- del df
58
 
59
  if __name__ == "__main__":
60
  main()
 
1
  import streamlit as st
2
  import requests
 
3
  import pandas as pd
4
 
5
  # Hard-coded API key for demonstration purposes
 
11
  alpha_vantage_data = response.json()
12
  return alpha_vantage_data
13
 
 
 
 
 
 
 
 
 
 
 
14
  def main():
15
  st.title("Stock Trend Predictor")
16
 
 
26
  df.index = pd.to_datetime(df.index)
27
  df = df.dropna(axis=0)
28
 
29
+ # Print DataFrame for observation
30
+ st.subheader("Raw Data:")
31
+ st.write(df)
 
 
 
 
 
 
 
 
 
 
 
 
32
 
33
+ # Uncomment the next line if you want to stop the execution here to observe the data
34
+ # st.stop()
35
 
36
  if __name__ == "__main__":
37
  main()