Update app.py
Browse files
app.py
CHANGED
@@ -1,30 +1,67 @@
|
|
1 |
-
# Import necessary libraries
|
2 |
import streamlit as st
|
|
|
3 |
import requests
|
4 |
-
import pandas as pd
|
5 |
-
from datetime import datetime
|
6 |
from Pandas_Market_Predictor import Pandas_Market_Predictor
|
|
|
|
|
7 |
|
8 |
# Hard-coded API key for demonstration purposes
|
9 |
API_KEY = "QR8F9B7T6R2SWTAT"
|
10 |
|
11 |
def fetch_alpha_vantage_data(api_key, symbol):
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
def calculate_indicators(data):
|
23 |
# Convert all columns to numeric
|
24 |
data = data.apply(pd.to_numeric, errors='coerce')
|
25 |
|
26 |
# Example: Simple condition for doji and inside
|
27 |
-
data['Doji'] = abs(data['
|
28 |
data['Inside'] = (data['High'] < data['High'].shift(1)) & (data['Low'] > data['Low'].shift(1))
|
29 |
return data
|
30 |
|
@@ -32,63 +69,58 @@ def display_signals(signal_type, signals):
|
|
32 |
st.subheader(f"{signal_type} Signals:")
|
33 |
st.write(signals)
|
34 |
|
35 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
# Create predictor
|
37 |
-
my_market_predictor = Pandas_Market_Predictor(
|
38 |
|
39 |
# Predict Trend
|
40 |
indicators = ["Doji", "Inside"]
|
|
|
41 |
# Display loading message during prediction
|
42 |
with st.spinner("Predicting trend using AI ...."):
|
43 |
# Predict trend
|
44 |
trend = my_market_predictor.Trend_Detection(indicators, 10)
|
45 |
-
return trend
|
46 |
-
|
47 |
-
def main():
|
48 |
-
st.title("Stock Trend Predictor")
|
49 |
|
50 |
-
#
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
alpha_vantage_data = fetch_alpha_vantage_data(API_KEY, symbol)
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {})
|
59 |
-
df = pd.DataFrame(alpha_vantage_time_series).T
|
60 |
-
df.index = pd.to_datetime(df.index)
|
61 |
-
df = df.dropna(axis=0)
|
62 |
-
|
63 |
-
# Rename columns
|
64 |
-
df = df.rename(columns={'1. open': 'Open', '2. high': 'High', '3. low': 'Low', '4. close': 'Close', '5. volume': 'Volume'})
|
65 |
-
|
66 |
-
# Calculate indicators
|
67 |
-
df = calculate_indicators(df)
|
68 |
-
|
69 |
-
# Display stock trading signals
|
70 |
-
strategic_signals = StrategicSignals(symbol=symbol)
|
71 |
-
|
72 |
-
# Display loading message during processing
|
73 |
-
with st.spinner("Predicting signals using Strategic Indicators..."):
|
74 |
-
# Display signals
|
75 |
-
st.subheader(":orange[Strategic Indicators Trend Prediction]")
|
76 |
-
display_signals("Bollinger Bands", strategic_signals.get_bollinger_bands_signals())
|
77 |
-
display_signals("Breakout", strategic_signals.get_breakout_signals())
|
78 |
-
display_signals("Crossover", strategic_signals.get_crossover_signals())
|
79 |
-
display_signals("MACD", strategic_signals.get_macd_signals())
|
80 |
-
display_signals("RSI", strategic_signals.get_rsi_signals())
|
81 |
-
|
82 |
-
# Predict trend using AI
|
83 |
-
trend = predict_trend(df)
|
84 |
-
|
85 |
-
# Display results
|
86 |
-
st.subheader(":orange[AI Trend Prediction]")
|
87 |
-
st.write("Buy Trend :", trend['BUY'])
|
88 |
-
st.write("Sell Trend :", trend['SELL'])
|
89 |
-
|
90 |
-
# Delete the DataFrame to release memory
|
91 |
-
del df
|
92 |
|
93 |
if __name__ == "__main__":
|
94 |
main()
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from thronetrader import StrategicSignals
|
3 |
import requests
|
|
|
|
|
4 |
from Pandas_Market_Predictor import Pandas_Market_Predictor
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
|
8 |
# Hard-coded API key for demonstration purposes
|
9 |
API_KEY = "QR8F9B7T6R2SWTAT"
|
10 |
|
11 |
def fetch_alpha_vantage_data(api_key, symbol):
|
12 |
+
url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={symbol}&interval=5min&apikey={api_key}'
|
13 |
+
response = requests.get(url)
|
14 |
+
alpha_vantage_data = response.json()
|
15 |
+
return alpha_vantage_data
|
16 |
+
|
17 |
+
def main():
|
18 |
+
st.title("Stock Trend Predictor")
|
19 |
+
|
20 |
+
# User input for stock symbol
|
21 |
+
symbol = st.text_input("Enter Stock Symbol (e.g., IBM):")
|
22 |
+
|
23 |
+
if not symbol:
|
24 |
+
st.warning("Please enter a valid stock symbol.")
|
25 |
+
st.stop()
|
26 |
+
|
27 |
+
# Use the hard-coded API key
|
28 |
+
api_key = API_KEY
|
29 |
+
|
30 |
+
# Fetch Alpha Vantage data
|
31 |
+
alpha_vantage_data = fetch_alpha_vantage_data(api_key, symbol)
|
32 |
+
|
33 |
+
# Extract relevant data from Alpha Vantage response
|
34 |
+
alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {})
|
35 |
+
df = pd.DataFrame(alpha_vantage_time_series).T
|
36 |
+
df.index = pd.to_datetime(df.index)
|
37 |
+
df = df.dropna(axis=0)
|
38 |
+
|
39 |
+
# Display the raw data
|
40 |
+
st.subheader("Raw Data:")
|
41 |
+
st.write(df)
|
42 |
+
|
43 |
+
if __name__ == "__main__":
|
44 |
+
main()
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
# Hard-coded API key for demonstration purposes
|
50 |
+
API_KEY = "QR8F9B7T6R2SWTAT"
|
51 |
+
|
52 |
+
def fetch_alpha_vantage_data(api_key, symbol):
|
53 |
+
|
54 |
+
url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={symbol}&interval=5min&apikey={api_key}'
|
55 |
+
response = requests.get(url)
|
56 |
+
alpha_vantage_data = response.json()
|
57 |
+
return alpha_vantage_data
|
58 |
|
59 |
def calculate_indicators(data):
|
60 |
# Convert all columns to numeric
|
61 |
data = data.apply(pd.to_numeric, errors='coerce')
|
62 |
|
63 |
# Example: Simple condition for doji and inside
|
64 |
+
data['Doji'] = abs(data['Close'] - data['Open']) <= 0.01 * (data['High'] - data['Low'])
|
65 |
data['Inside'] = (data['High'] < data['High'].shift(1)) & (data['Low'] > data['Low'].shift(1))
|
66 |
return data
|
67 |
|
|
|
69 |
st.subheader(f"{signal_type} Signals:")
|
70 |
st.write(signals)
|
71 |
|
72 |
+
def main():
|
73 |
+
st.title("Stock Trend Predictor")
|
74 |
+
|
75 |
+
# Input for stock symbol
|
76 |
+
symbol = st.text_input("Enter stock symbol (e.g., AAPL):", "AAPL")
|
77 |
+
|
78 |
+
# Fetch Alpha Vantage data
|
79 |
+
alpha_vantage_data = fetch_alpha_vantage_data(API_KEY, symbol)
|
80 |
+
|
81 |
+
# Extract relevant data from Alpha Vantage response
|
82 |
+
alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {})
|
83 |
+
df = pd.DataFrame(alpha_vantage_time_series).T
|
84 |
+
df.index = pd.to_datetime(df.index)
|
85 |
+
df = df.dropna(axis=0)
|
86 |
+
|
87 |
+
# Rename columns
|
88 |
+
df = df.rename(columns={'1. open': 'Open', '2. high': 'High', '3. low': 'Low', '4. close': 'Close', '5. volume': 'Volume'})
|
89 |
+
|
90 |
+
# Calculate indicators
|
91 |
+
df = calculate_indicators(df)
|
92 |
+
|
93 |
+
# Display stock trading signals
|
94 |
+
strategic_signals = StrategicSignals(symbol=symbol)
|
95 |
+
|
96 |
+
# Display loading message during processing
|
97 |
+
with st.spinner("Predicting signals using Strategic Indicators..."):
|
98 |
+
# Display signals
|
99 |
+
st.subheader(":orange[Strategic Indicators Trend Prediction]")
|
100 |
+
display_signals("Bollinger Bands", strategic_signals.get_bollinger_bands_signals())
|
101 |
+
display_signals("Breakout", strategic_signals.get_breakout_signals())
|
102 |
+
display_signals("Crossover", strategic_signals.get_crossover_signals())
|
103 |
+
display_signals("MACD", strategic_signals.get_macd_signals())
|
104 |
+
display_signals("RSI", strategic_signals.get_rsi_signals())
|
105 |
+
|
106 |
# Create predictor
|
107 |
+
my_market_predictor = Pandas_Market_Predictor(df)
|
108 |
|
109 |
# Predict Trend
|
110 |
indicators = ["Doji", "Inside"]
|
111 |
+
|
112 |
# Display loading message during prediction
|
113 |
with st.spinner("Predicting trend using AI ...."):
|
114 |
# Predict trend
|
115 |
trend = my_market_predictor.Trend_Detection(indicators, 10)
|
|
|
|
|
|
|
|
|
116 |
|
117 |
+
# Display results
|
118 |
+
st.subheader(":orange[AI Trend Prediction]")
|
119 |
+
st.write("Buy Trend :", trend['BUY'])
|
120 |
+
st.write("Sell Trend :", trend['SELL'])
|
|
|
121 |
|
122 |
+
# Delete the DataFrame to release memory
|
123 |
+
del df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
if __name__ == "__main__":
|
126 |
main()
|