Update app.py
Browse files
app.py
CHANGED
@@ -14,12 +14,12 @@ def fetch_stock_data(symbol, start_date, end_date):
|
|
14 |
|
15 |
# Function to create features for the model
|
16 |
def create_features(data):
|
17 |
-
data
|
18 |
-
data['Year'] = data.
|
19 |
-
data['Month'] = data.
|
20 |
-
data['Day'] = data.
|
21 |
-
data['Hour'] = data.
|
22 |
-
data['Minute'] = data.
|
23 |
|
24 |
return data
|
25 |
|
@@ -28,20 +28,37 @@ def train_model(data):
|
|
28 |
features = ['Year', 'Month', 'Day', 'Hour', 'Minute']
|
29 |
target = 'Close'
|
30 |
|
|
|
|
|
|
|
|
|
31 |
X = data[features]
|
32 |
y = data[target]
|
33 |
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
predictions = model.predict(X_test)
|
41 |
-
mse = mean_squared_error(y_test, predictions)
|
42 |
-
st.write(f"Mean Squared Error: {mse}")
|
43 |
|
44 |
-
|
|
|
|
|
45 |
|
46 |
# Streamlit UI
|
47 |
def main():
|
@@ -61,19 +78,20 @@ def main():
|
|
61 |
# Train the model
|
62 |
model = train_model(stock_data)
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
77 |
|
78 |
# Run the Streamlit app
|
79 |
if __name__ == '__main__':
|
|
|
14 |
|
15 |
# Function to create features for the model
|
16 |
def create_features(data):
|
17 |
+
data['Date'] = data.index
|
18 |
+
data['Year'] = data['Date'].dt.year
|
19 |
+
data['Month'] = data['Date'].dt.month
|
20 |
+
data['Day'] = data['Date'].dt.day
|
21 |
+
data['Hour'] = data['Date'].dt.hour
|
22 |
+
data['Minute'] = data['Date'].dt.minute
|
23 |
|
24 |
return data
|
25 |
|
|
|
28 |
features = ['Year', 'Month', 'Day', 'Hour', 'Minute']
|
29 |
target = 'Close'
|
30 |
|
31 |
+
if len(data) == 0:
|
32 |
+
st.write("Not enough data for training.")
|
33 |
+
return None
|
34 |
+
|
35 |
X = data[features]
|
36 |
y = data[target]
|
37 |
|
38 |
+
if len(data) <= 1:
|
39 |
+
st.write("Not enough data for splitting.")
|
40 |
+
return None
|
41 |
+
|
42 |
+
try:
|
43 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
44 |
+
|
45 |
+
if len(X_train) == 0 or len(X_test) == 0:
|
46 |
+
st.write("Not enough data after splitting.")
|
47 |
+
return None
|
48 |
+
|
49 |
+
model = RandomForestRegressor()
|
50 |
+
model.fit(X_train, y_train)
|
51 |
|
52 |
+
# Evaluate the model
|
53 |
+
predictions = model.predict(X_test)
|
54 |
+
mse = mean_squared_error(y_test, predictions)
|
55 |
+
st.write(f"Mean Squared Error: {mse}")
|
56 |
|
57 |
+
return model
|
|
|
|
|
|
|
58 |
|
59 |
+
except ValueError as e:
|
60 |
+
st.write(f"Error during train-test split: {e}")
|
61 |
+
return None
|
62 |
|
63 |
# Streamlit UI
|
64 |
def main():
|
|
|
78 |
# Train the model
|
79 |
model = train_model(stock_data)
|
80 |
|
81 |
+
if model:
|
82 |
+
# Predict the stock price for a specific date (e.g., the last date in the dataset)
|
83 |
+
prediction_date = stock_data['Date'].iloc[-1]
|
84 |
+
prediction_features = [[
|
85 |
+
prediction_date.year,
|
86 |
+
prediction_date.month,
|
87 |
+
prediction_date.day,
|
88 |
+
prediction_date.hour,
|
89 |
+
prediction_date.minute
|
90 |
+
]]
|
91 |
+
predicted_price = model.predict(prediction_features)[0]
|
92 |
+
|
93 |
+
st.subheader(f"Predicted Stock Price on {prediction_date} (UTC):")
|
94 |
+
st.write(f"${predicted_price:.2f}")
|
95 |
|
96 |
# Run the Streamlit app
|
97 |
if __name__ == '__main__':
|