Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,9 @@ import streamlit as st
|
|
2 |
import requests
|
3 |
from Pandas_Market_Predictor import Pandas_Market_Predictor
|
4 |
import pandas as pd
|
|
|
|
|
|
|
5 |
|
6 |
# Hard-coded API key for demonstration purposes
|
7 |
API_KEY = "QR8F9B7T6R2SWTAT"
|
@@ -13,16 +16,23 @@ def fetch_alpha_vantage_data(api_key):
|
|
13 |
return alpha_vantage_data
|
14 |
|
15 |
def calculate_indicators(data):
|
16 |
-
# Convert all columns to numeric
|
17 |
data = data.apply(pd.to_numeric, errors='coerce')
|
18 |
-
|
19 |
-
|
20 |
-
data['Doji'] = abs(data['Close'] - data['open']) <= 0.01 * (data['high'] - data['low'])
|
21 |
-
data['Inside'] = (data['high'] < data['high'].shift(1)) & (data['low'] > data['low'].shift(1))
|
22 |
return data
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
def main():
|
25 |
-
st.title("Stock
|
26 |
|
27 |
# Use the hard-coded API key
|
28 |
api_key = API_KEY
|
@@ -37,7 +47,7 @@ def main():
|
|
37 |
df = df.dropna(axis=0)
|
38 |
|
39 |
# Rename columns
|
40 |
-
df = df.rename(columns={'1. open': '
|
41 |
|
42 |
# Calculate indicators
|
43 |
df = calculate_indicators(df)
|
@@ -45,21 +55,22 @@ def main():
|
|
45 |
# Create predictor
|
46 |
my_market_predictor = Pandas_Market_Predictor(df)
|
47 |
|
48 |
-
#
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
#
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
st.
|
62 |
-
st.write("
|
|
|
63 |
|
64 |
# Delete the DataFrame to release memory
|
65 |
del df
|
|
|
2 |
import requests
|
3 |
from Pandas_Market_Predictor import Pandas_Market_Predictor
|
4 |
import pandas as pd
|
5 |
+
from sklearn.model_selection import train_test_split
|
6 |
+
from sklearn.linear_model import LinearRegression
|
7 |
+
from sklearn.metrics import mean_squared_error, r2_score
|
8 |
|
9 |
# Hard-coded API key for demonstration purposes
|
10 |
API_KEY = "QR8F9B7T6R2SWTAT"
|
|
|
16 |
return alpha_vantage_data
|
17 |
|
18 |
def calculate_indicators(data):
|
|
|
19 |
data = data.apply(pd.to_numeric, errors='coerce')
|
20 |
+
data['Doji'] = abs(data['Close'] - data['Open']) <= 0.01 * (data['High'] - data['Low'])
|
21 |
+
data['Inside'] = (data['High'] < data['High'].shift(1)) & (data['Low'] > data['Low'].shift(1))
|
|
|
|
|
22 |
return data
|
23 |
|
24 |
+
def prepare_data(data, target_column='Close'):
|
25 |
+
X = data.drop(target_column, axis=1)
|
26 |
+
y = data[target_column]
|
27 |
+
return X, y
|
28 |
+
|
29 |
+
def train_linear_regression(X_train, y_train):
|
30 |
+
model = LinearRegression()
|
31 |
+
model.fit(X_train, y_train)
|
32 |
+
return model
|
33 |
+
|
34 |
def main():
|
35 |
+
st.title("Stock Price Predictor")
|
36 |
|
37 |
# Use the hard-coded API key
|
38 |
api_key = API_KEY
|
|
|
47 |
df = df.dropna(axis=0)
|
48 |
|
49 |
# Rename columns
|
50 |
+
df = df.rename(columns={'1. open': 'Open', '2. high': 'High', '3. low': 'Low', '4. close': 'Close', '5. volume': 'Volume'})
|
51 |
|
52 |
# Calculate indicators
|
53 |
df = calculate_indicators(df)
|
|
|
55 |
# Create predictor
|
56 |
my_market_predictor = Pandas_Market_Predictor(df)
|
57 |
|
58 |
+
# Prepare data for linear regression
|
59 |
+
X, y = prepare_data(df)
|
60 |
+
|
61 |
+
# Split data into training and testing sets
|
62 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
63 |
+
|
64 |
+
# Train linear regression model
|
65 |
+
model = train_linear_regression(X_train, y_train)
|
66 |
+
|
67 |
+
# Make predictions on the test set
|
68 |
+
y_pred = model.predict(X_test)
|
69 |
+
|
70 |
+
# Display linear regression results
|
71 |
+
st.subheader("Linear Regression Results:")
|
72 |
+
st.write("Mean Squared Error:", mean_squared_error(y_test, y_pred))
|
73 |
+
st.write("R-squared Score:", r2_score(y_test, y_pred))
|
74 |
|
75 |
# Delete the DataFrame to release memory
|
76 |
del df
|