Geek7 commited on
Commit
a261fc2
·
verified ·
1 Parent(s): d04f2e1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -39
app.py CHANGED
@@ -43,39 +43,9 @@ def main():
43
  if __name__ == "__main__":
44
  main()
45
 
46
- def main():
47
- st.title("Strategic Trading Signals")
48
-
49
- # Input for stock symbol
50
- symbol = st.text_input("Enter stock symbol (e.g., AAPL):", "AAPL")
51
-
52
- # Display strategic trading signals
53
- strategic_signals = StrategicSignals(symbol=symbol)
54
-
55
- st.subheader("Bollinger Bands Signals:")
56
- bollinger_bands_signals = strategic_signals.get_bollinger_bands_signals()
57
- st.write(bollinger_bands_signals)
58
-
59
- st.subheader("Breakout Signals:")
60
- breakout_signals = strategic_signals.get_breakout_signals()
61
- st.write(breakout_signals)
62
-
63
- st.subheader("Crossover Signals:")
64
- crossover_signals = strategic_signals.get_crossover_signals()
65
- st.write(crossover_signals)
66
-
67
- st.subheader("MACD Signals:")
68
- macd_signals = strategic_signals.get_macd_signals()
69
- st.write(macd_signals)
70
-
71
- st.subheader("RSI Signals:")
72
- rsi_signals = strategic_signals.get_rsi_signals()
73
- st.write(rsi_signals)
74
-
75
- if __name__ == "__main__":
76
- main()
77
 
78
-
79
  def fetch_alpha_vantage_data(api_key, symbol):
80
  url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={symbol}&interval=5min&apikey={api_key}'
81
  response = requests.get(url)
@@ -91,15 +61,18 @@ def calculate_indicators(data):
91
  data['Inside'] = (data['High'] < data['High'].shift(1)) & (data['Low'] > data['Low'].shift(1))
92
  return data
93
 
94
- def main():
 
 
95
 
 
96
  st.title("AI Stock Trend Predictor")
97
-
98
- # Use the hard-coded API key
99
- api_key = API_KEY
100
 
101
  # Fetch Alpha Vantage data
102
- alpha_vantage_data = fetch_alpha_vantage_data(api_key, symbol)
103
 
104
  # Extract relevant data from Alpha Vantage response
105
  alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {})
@@ -113,6 +86,15 @@ def main():
113
  # Calculate indicators
114
  df = calculate_indicators(df)
115
 
 
 
 
 
 
 
 
 
 
116
  # Create predictor
117
  my_market_predictor = Pandas_Market_Predictor(df)
118
 
@@ -120,11 +102,11 @@ def main():
120
  indicators = ["Doji", "Inside"]
121
  trend = my_market_predictor.Trend_Detection(indicators, 10)
122
 
123
- # Display results
124
  st.subheader("Predicted Trend:")
125
  st.write("Buy Trend :", trend['BUY'])
126
  st.write("Sell Trend :", trend['SELL'])
127
-
128
  # Delete the DataFrame to release memory
129
  del df
130
 
 
43
  if __name__ == "__main__":
44
  main()
45
 
46
+ # Hard-coded API key for demonstration purposes
47
+ API_KEY = "QR8F9B7T6R2SWTAT"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
 
 
49
  def fetch_alpha_vantage_data(api_key, symbol):
50
  url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={symbol}&interval=5min&apikey={api_key}'
51
  response = requests.get(url)
 
61
  data['Inside'] = (data['High'] < data['High'].shift(1)) & (data['Low'] > data['Low'].shift(1))
62
  return data
63
 
64
+ def display_signals(signal_type, signals):
65
+ st.subheader(f"{signal_type} Signals:")
66
+ st.write(signals)
67
 
68
+ def main():
69
  st.title("AI Stock Trend Predictor")
70
+
71
+ # Input for stock symbol
72
+ symbol = st.text_input("Enter stock symbol (e.g., AAPL):", "AAPL")
73
 
74
  # Fetch Alpha Vantage data
75
+ alpha_vantage_data = fetch_alpha_vantage_data(API_KEY, symbol)
76
 
77
  # Extract relevant data from Alpha Vantage response
78
  alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {})
 
86
  # Calculate indicators
87
  df = calculate_indicators(df)
88
 
89
+ # Display stock trading signals
90
+ strategic_signals = StrategicSignals(symbol=symbol)
91
+
92
+ display_signals("Bollinger Bands", strategic_signals.get_bollinger_bands_signals())
93
+ display_signals("Breakout", strategic_signals.get_breakout_signals())
94
+ display_signals("Crossover", strategic_signals.get_crossover_signals())
95
+ display_signals("MACD", strategic_signals.get_macd_signals())
96
+ display_signals("RSI", strategic_signals.get_rsi_signals())
97
+
98
  # Create predictor
99
  my_market_predictor = Pandas_Market_Predictor(df)
100
 
 
102
  indicators = ["Doji", "Inside"]
103
  trend = my_market_predictor.Trend_Detection(indicators, 10)
104
 
105
+ # Display trend predictions
106
  st.subheader("Predicted Trend:")
107
  st.write("Buy Trend :", trend['BUY'])
108
  st.write("Sell Trend :", trend['SELL'])
109
+
110
  # Delete the DataFrame to release memory
111
  del df
112