Update app.py
Browse files
app.py
CHANGED
|
@@ -43,39 +43,9 @@ def main():
|
|
| 43 |
if __name__ == "__main__":
|
| 44 |
main()
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
# Input for stock symbol
|
| 50 |
-
symbol = st.text_input("Enter stock symbol (e.g., AAPL):", "AAPL")
|
| 51 |
-
|
| 52 |
-
# Display strategic trading signals
|
| 53 |
-
strategic_signals = StrategicSignals(symbol=symbol)
|
| 54 |
-
|
| 55 |
-
st.subheader("Bollinger Bands Signals:")
|
| 56 |
-
bollinger_bands_signals = strategic_signals.get_bollinger_bands_signals()
|
| 57 |
-
st.write(bollinger_bands_signals)
|
| 58 |
-
|
| 59 |
-
st.subheader("Breakout Signals:")
|
| 60 |
-
breakout_signals = strategic_signals.get_breakout_signals()
|
| 61 |
-
st.write(breakout_signals)
|
| 62 |
-
|
| 63 |
-
st.subheader("Crossover Signals:")
|
| 64 |
-
crossover_signals = strategic_signals.get_crossover_signals()
|
| 65 |
-
st.write(crossover_signals)
|
| 66 |
-
|
| 67 |
-
st.subheader("MACD Signals:")
|
| 68 |
-
macd_signals = strategic_signals.get_macd_signals()
|
| 69 |
-
st.write(macd_signals)
|
| 70 |
-
|
| 71 |
-
st.subheader("RSI Signals:")
|
| 72 |
-
rsi_signals = strategic_signals.get_rsi_signals()
|
| 73 |
-
st.write(rsi_signals)
|
| 74 |
-
|
| 75 |
-
if __name__ == "__main__":
|
| 76 |
-
main()
|
| 77 |
|
| 78 |
-
|
| 79 |
def fetch_alpha_vantage_data(api_key, symbol):
|
| 80 |
url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={symbol}&interval=5min&apikey={api_key}'
|
| 81 |
response = requests.get(url)
|
|
@@ -91,15 +61,18 @@ def calculate_indicators(data):
|
|
| 91 |
data['Inside'] = (data['High'] < data['High'].shift(1)) & (data['Low'] > data['Low'].shift(1))
|
| 92 |
return data
|
| 93 |
|
| 94 |
-
def
|
|
|
|
|
|
|
| 95 |
|
|
|
|
| 96 |
st.title("AI Stock Trend Predictor")
|
| 97 |
-
|
| 98 |
-
#
|
| 99 |
-
|
| 100 |
|
| 101 |
# Fetch Alpha Vantage data
|
| 102 |
-
alpha_vantage_data = fetch_alpha_vantage_data(
|
| 103 |
|
| 104 |
# Extract relevant data from Alpha Vantage response
|
| 105 |
alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {})
|
|
@@ -113,6 +86,15 @@ def main():
|
|
| 113 |
# Calculate indicators
|
| 114 |
df = calculate_indicators(df)
|
| 115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
# Create predictor
|
| 117 |
my_market_predictor = Pandas_Market_Predictor(df)
|
| 118 |
|
|
@@ -120,11 +102,11 @@ def main():
|
|
| 120 |
indicators = ["Doji", "Inside"]
|
| 121 |
trend = my_market_predictor.Trend_Detection(indicators, 10)
|
| 122 |
|
| 123 |
-
# Display
|
| 124 |
st.subheader("Predicted Trend:")
|
| 125 |
st.write("Buy Trend :", trend['BUY'])
|
| 126 |
st.write("Sell Trend :", trend['SELL'])
|
| 127 |
-
|
| 128 |
# Delete the DataFrame to release memory
|
| 129 |
del df
|
| 130 |
|
|
|
|
| 43 |
if __name__ == "__main__":
|
| 44 |
main()
|
| 45 |
|
| 46 |
+
# Hard-coded API key for demonstration purposes
|
| 47 |
+
API_KEY = "QR8F9B7T6R2SWTAT"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
|
|
|
| 49 |
def fetch_alpha_vantage_data(api_key, symbol):
|
| 50 |
url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={symbol}&interval=5min&apikey={api_key}'
|
| 51 |
response = requests.get(url)
|
|
|
|
| 61 |
data['Inside'] = (data['High'] < data['High'].shift(1)) & (data['Low'] > data['Low'].shift(1))
|
| 62 |
return data
|
| 63 |
|
| 64 |
+
def display_signals(signal_type, signals):
|
| 65 |
+
st.subheader(f"{signal_type} Signals:")
|
| 66 |
+
st.write(signals)
|
| 67 |
|
| 68 |
+
def main():
|
| 69 |
st.title("AI Stock Trend Predictor")
|
| 70 |
+
|
| 71 |
+
# Input for stock symbol
|
| 72 |
+
symbol = st.text_input("Enter stock symbol (e.g., AAPL):", "AAPL")
|
| 73 |
|
| 74 |
# Fetch Alpha Vantage data
|
| 75 |
+
alpha_vantage_data = fetch_alpha_vantage_data(API_KEY, symbol)
|
| 76 |
|
| 77 |
# Extract relevant data from Alpha Vantage response
|
| 78 |
alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {})
|
|
|
|
| 86 |
# Calculate indicators
|
| 87 |
df = calculate_indicators(df)
|
| 88 |
|
| 89 |
+
# Display stock trading signals
|
| 90 |
+
strategic_signals = StrategicSignals(symbol=symbol)
|
| 91 |
+
|
| 92 |
+
display_signals("Bollinger Bands", strategic_signals.get_bollinger_bands_signals())
|
| 93 |
+
display_signals("Breakout", strategic_signals.get_breakout_signals())
|
| 94 |
+
display_signals("Crossover", strategic_signals.get_crossover_signals())
|
| 95 |
+
display_signals("MACD", strategic_signals.get_macd_signals())
|
| 96 |
+
display_signals("RSI", strategic_signals.get_rsi_signals())
|
| 97 |
+
|
| 98 |
# Create predictor
|
| 99 |
my_market_predictor = Pandas_Market_Predictor(df)
|
| 100 |
|
|
|
|
| 102 |
indicators = ["Doji", "Inside"]
|
| 103 |
trend = my_market_predictor.Trend_Detection(indicators, 10)
|
| 104 |
|
| 105 |
+
# Display trend predictions
|
| 106 |
st.subheader("Predicted Trend:")
|
| 107 |
st.write("Buy Trend :", trend['BUY'])
|
| 108 |
st.write("Sell Trend :", trend['SELL'])
|
| 109 |
+
|
| 110 |
# Delete the DataFrame to release memory
|
| 111 |
del df
|
| 112 |
|