Geek7 commited on
Commit
bae021b
·
verified ·
1 Parent(s): 52f3084

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -37
app.py CHANGED
@@ -1,18 +1,13 @@
1
  import streamlit as st
2
- import yfinance as yf
3
- import pandas as pd
4
  import requests
5
- from thronetrader import StrategicSignals
6
  from Pandas_Market_Predictor import Pandas_Market_Predictor
7
-
8
-
9
 
10
  # Hard-coded API key for demonstration purposes
11
  API_KEY = "QR8F9B7T6R2SWTAT"
12
 
13
- def fetch_alpha_vantage_data(api_key, symbol):
14
-
15
- url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={symbol}&interval=5min&apikey={api_key}'
16
  response = requests.get(url)
17
  alpha_vantage_data = response.json()
18
  return alpha_vantage_data
@@ -22,22 +17,18 @@ def calculate_indicators(data):
22
  data = data.apply(pd.to_numeric, errors='coerce')
23
 
24
  # Example: Simple condition for doji and inside
25
- data['Doji'] = abs(data['close'] - data['Open']) <= 0.01 * (data['High'] - data['Low'])
26
- data['Inside'] = (data['High'] < data['High'].shift(1)) & (data['Low'] > data['Low'].shift(1))
27
  return data
28
 
29
- def display_signals(signal_type, signals):
30
- st.subheader(f"{signal_type} Signals:")
31
- st.write(signals)
32
-
33
  def main():
34
  st.title("Stock Trend Predictor")
35
 
36
- # Input for stock symbol
37
- symbol = st.text_input("Enter stock symbol (e.g., AAPL):", "AAPL")
38
 
39
  # Fetch Alpha Vantage data
40
- alpha_vantage_data = fetch_alpha_vantage_data(API_KEY, symbol)
41
 
42
  # Extract relevant data from Alpha Vantage response
43
  alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {})
@@ -46,39 +37,23 @@ def main():
46
  df = df.dropna(axis=0)
47
 
48
  # Rename columns
49
- df = df.rename(columns={'1. open': 'Open', '2. high': 'High', '3. low': 'Low', '4. close': 'Close', '5. volume': 'Volume'})
50
 
51
  # Calculate indicators
52
  df = calculate_indicators(df)
53
 
54
- # Display stock trading signals
55
- strategic_signals = StrategicSignals(symbol=symbol)
56
-
57
- # Display loading message during processing
58
- with st.spinner("Predicting signals using Strategic Indicators..."):
59
- # Display signals
60
- st.subheader(":orange[Strategic Indicators Trend Prediction]")
61
- display_signals("Bollinger Bands", strategic_signals.get_bollinger_bands_signals())
62
- display_signals("Breakout", strategic_signals.get_breakout_signals())
63
- display_signals("Crossover", strategic_signals.get_crossover_signals())
64
- display_signals("MACD", strategic_signals.get_macd_signals())
65
- display_signals("RSI", strategic_signals.get_rsi_signals())
66
-
67
  # Create predictor
68
  my_market_predictor = Pandas_Market_Predictor(df)
69
 
70
  # Predict Trend
71
  indicators = ["Doji", "Inside"]
72
-
73
- # Display loading message during prediction
74
- with st.spinner("Predicting trend using AI ...."):
75
- # Predict trend
76
- trend = my_market_predictor.Trend_Detection(indicators, 10)
77
 
78
  # Display results
79
- st.subheader(":orange[AI Trend Prediction]")
80
  st.write("Buy Trend :", trend['BUY'])
81
  st.write("Sell Trend :", trend['SELL'])
 
82
 
83
  # Delete the DataFrame to release memory
84
  del df
 
1
  import streamlit as st
 
 
2
  import requests
 
3
  from Pandas_Market_Predictor import Pandas_Market_Predictor
4
+ import pandas as pd
 
5
 
6
  # Hard-coded API key for demonstration purposes
7
  API_KEY = "QR8F9B7T6R2SWTAT"
8
 
9
+ def fetch_alpha_vantage_data(api_key):
10
+ url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol=IBM&interval=5min&apikey={api_key}'
 
11
  response = requests.get(url)
12
  alpha_vantage_data = response.json()
13
  return alpha_vantage_data
 
17
  data = data.apply(pd.to_numeric, errors='coerce')
18
 
19
  # Example: Simple condition for doji and inside
20
+ data['Doji'] = abs(data['Close'] - data['open']) <= 0.01 * (data['high'] - data['Low'])
21
+ data['Inside'] = (data['high'] < data['high'].shift(1)) & (data['Low'] > data['Low'].shift(1))
22
  return data
23
 
 
 
 
 
24
  def main():
25
  st.title("Stock Trend Predictor")
26
 
27
+ # Use the hard-coded API key
28
+ api_key = API_KEY
29
 
30
  # Fetch Alpha Vantage data
31
+ alpha_vantage_data = fetch_alpha_vantage_data(api_key)
32
 
33
  # Extract relevant data from Alpha Vantage response
34
  alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {})
 
37
  df = df.dropna(axis=0)
38
 
39
  # Rename columns
40
+ df = df.rename(columns={'1. open': 'open', '2. high': 'high', '3. low': 'Low', '4. close': 'Close', '5. volume': 'volume'})
41
 
42
  # Calculate indicators
43
  df = calculate_indicators(df)
44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
  # Create predictor
46
  my_market_predictor = Pandas_Market_Predictor(df)
47
 
48
  # Predict Trend
49
  indicators = ["Doji", "Inside"]
50
+ trend = my_market_predictor.Trend_Detection(indicators, 10)
 
 
 
 
51
 
52
  # Display results
53
+ st.subheader("Predicted Trend:")
54
  st.write("Buy Trend :", trend['BUY'])
55
  st.write("Sell Trend :", trend['SELL'])
56
+ st.write(f"Standard Deviation Percentage: {my_market_predictor.PERCENT_STD}%")
57
 
58
  # Delete the DataFrame to release memory
59
  del df