Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,13 @@
|
|
1 |
import streamlit as st
|
2 |
-
import yfinance as yf
|
3 |
-
import pandas as pd
|
4 |
import requests
|
5 |
-
from thronetrader import StrategicSignals
|
6 |
from Pandas_Market_Predictor import Pandas_Market_Predictor
|
7 |
-
|
8 |
-
|
9 |
|
10 |
# Hard-coded API key for demonstration purposes
|
11 |
API_KEY = "QR8F9B7T6R2SWTAT"
|
12 |
|
13 |
-
def fetch_alpha_vantage_data(api_key
|
14 |
-
|
15 |
-
url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={symbol}&interval=5min&apikey={api_key}'
|
16 |
response = requests.get(url)
|
17 |
alpha_vantage_data = response.json()
|
18 |
return alpha_vantage_data
|
@@ -22,22 +17,18 @@ def calculate_indicators(data):
|
|
22 |
data = data.apply(pd.to_numeric, errors='coerce')
|
23 |
|
24 |
# Example: Simple condition for doji and inside
|
25 |
-
data['Doji'] = abs(data['
|
26 |
-
data['Inside'] = (data['
|
27 |
return data
|
28 |
|
29 |
-
def display_signals(signal_type, signals):
|
30 |
-
st.subheader(f"{signal_type} Signals:")
|
31 |
-
st.write(signals)
|
32 |
-
|
33 |
def main():
|
34 |
st.title("Stock Trend Predictor")
|
35 |
|
36 |
-
#
|
37 |
-
|
38 |
|
39 |
# Fetch Alpha Vantage data
|
40 |
-
alpha_vantage_data = fetch_alpha_vantage_data(
|
41 |
|
42 |
# Extract relevant data from Alpha Vantage response
|
43 |
alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {})
|
@@ -46,39 +37,23 @@ def main():
|
|
46 |
df = df.dropna(axis=0)
|
47 |
|
48 |
# Rename columns
|
49 |
-
df = df.rename(columns={'1. open': '
|
50 |
|
51 |
# Calculate indicators
|
52 |
df = calculate_indicators(df)
|
53 |
|
54 |
-
# Display stock trading signals
|
55 |
-
strategic_signals = StrategicSignals(symbol=symbol)
|
56 |
-
|
57 |
-
# Display loading message during processing
|
58 |
-
with st.spinner("Predicting signals using Strategic Indicators..."):
|
59 |
-
# Display signals
|
60 |
-
st.subheader(":orange[Strategic Indicators Trend Prediction]")
|
61 |
-
display_signals("Bollinger Bands", strategic_signals.get_bollinger_bands_signals())
|
62 |
-
display_signals("Breakout", strategic_signals.get_breakout_signals())
|
63 |
-
display_signals("Crossover", strategic_signals.get_crossover_signals())
|
64 |
-
display_signals("MACD", strategic_signals.get_macd_signals())
|
65 |
-
display_signals("RSI", strategic_signals.get_rsi_signals())
|
66 |
-
|
67 |
# Create predictor
|
68 |
my_market_predictor = Pandas_Market_Predictor(df)
|
69 |
|
70 |
# Predict Trend
|
71 |
indicators = ["Doji", "Inside"]
|
72 |
-
|
73 |
-
# Display loading message during prediction
|
74 |
-
with st.spinner("Predicting trend using AI ...."):
|
75 |
-
# Predict trend
|
76 |
-
trend = my_market_predictor.Trend_Detection(indicators, 10)
|
77 |
|
78 |
# Display results
|
79 |
-
st.subheader("
|
80 |
st.write("Buy Trend :", trend['BUY'])
|
81 |
st.write("Sell Trend :", trend['SELL'])
|
|
|
82 |
|
83 |
# Delete the DataFrame to release memory
|
84 |
del df
|
|
|
1 |
import streamlit as st
|
|
|
|
|
2 |
import requests
|
|
|
3 |
from Pandas_Market_Predictor import Pandas_Market_Predictor
|
4 |
+
import pandas as pd
|
|
|
5 |
|
6 |
# Hard-coded API key for demonstration purposes
|
7 |
API_KEY = "QR8F9B7T6R2SWTAT"
|
8 |
|
9 |
+
def fetch_alpha_vantage_data(api_key):
|
10 |
+
url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol=IBM&interval=5min&apikey={api_key}'
|
|
|
11 |
response = requests.get(url)
|
12 |
alpha_vantage_data = response.json()
|
13 |
return alpha_vantage_data
|
|
|
17 |
data = data.apply(pd.to_numeric, errors='coerce')
|
18 |
|
19 |
# Example: Simple condition for doji and inside
|
20 |
+
data['Doji'] = abs(data['Close'] - data['open']) <= 0.01 * (data['high'] - data['Low'])
|
21 |
+
data['Inside'] = (data['high'] < data['high'].shift(1)) & (data['Low'] > data['Low'].shift(1))
|
22 |
return data
|
23 |
|
|
|
|
|
|
|
|
|
24 |
def main():
|
25 |
st.title("Stock Trend Predictor")
|
26 |
|
27 |
+
# Use the hard-coded API key
|
28 |
+
api_key = API_KEY
|
29 |
|
30 |
# Fetch Alpha Vantage data
|
31 |
+
alpha_vantage_data = fetch_alpha_vantage_data(api_key)
|
32 |
|
33 |
# Extract relevant data from Alpha Vantage response
|
34 |
alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {})
|
|
|
37 |
df = df.dropna(axis=0)
|
38 |
|
39 |
# Rename columns
|
40 |
+
df = df.rename(columns={'1. open': 'open', '2. high': 'high', '3. low': 'Low', '4. close': 'Close', '5. volume': 'volume'})
|
41 |
|
42 |
# Calculate indicators
|
43 |
df = calculate_indicators(df)
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
# Create predictor
|
46 |
my_market_predictor = Pandas_Market_Predictor(df)
|
47 |
|
48 |
# Predict Trend
|
49 |
indicators = ["Doji", "Inside"]
|
50 |
+
trend = my_market_predictor.Trend_Detection(indicators, 10)
|
|
|
|
|
|
|
|
|
51 |
|
52 |
# Display results
|
53 |
+
st.subheader("Predicted Trend:")
|
54 |
st.write("Buy Trend :", trend['BUY'])
|
55 |
st.write("Sell Trend :", trend['SELL'])
|
56 |
+
st.write(f"Standard Deviation Percentage: {my_market_predictor.PERCENT_STD}%")
|
57 |
|
58 |
# Delete the DataFrame to release memory
|
59 |
del df
|