Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import streamlit as st
|
|
2 |
import requests
|
3 |
from Pandas_Market_Predictor import Pandas_Market_Predictor
|
4 |
import pandas as pd
|
|
|
5 |
|
6 |
# Hard-coded API key for demonstration purposes
|
7 |
API_KEY = "QR8F9B7T6R2SWTAT"
|
@@ -38,8 +39,8 @@ def calculate_indicators(data):
|
|
38 |
data['12EMA'] = data['Close'].ewm(span=12).mean()
|
39 |
data['MACD'] = data['12EMA'] - data['26EMA']
|
40 |
|
41 |
-
#
|
42 |
-
|
43 |
|
44 |
return data
|
45 |
|
@@ -59,12 +60,15 @@ def main():
|
|
59 |
|
60 |
df = calculate_indicators(df)
|
61 |
|
62 |
-
print("Data after calculating indicators:")
|
63 |
-
print(df.head()) # Print the first few rows of data
|
64 |
-
|
65 |
my_market_predictor = Pandas_Market_Predictor(df)
|
66 |
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
trend = my_market_predictor.Trend_Detection(indicators, 10)
|
69 |
|
70 |
st.subheader("Predicted Trend:")
|
|
|
2 |
import requests
|
3 |
from Pandas_Market_Predictor import Pandas_Market_Predictor
|
4 |
import pandas as pd
|
5 |
+
import numpy as np
|
6 |
|
7 |
# Hard-coded API key for demonstration purposes
|
8 |
API_KEY = "QR8F9B7T6R2SWTAT"
|
|
|
39 |
data['12EMA'] = data['Close'].ewm(span=12).mean()
|
40 |
data['MACD'] = data['12EMA'] - data['26EMA']
|
41 |
|
42 |
+
# Calculate Ichimoku Cloud
|
43 |
+
data = calculate_ichimoku_cloud(data)
|
44 |
|
45 |
return data
|
46 |
|
|
|
60 |
|
61 |
df = calculate_indicators(df)
|
62 |
|
|
|
|
|
|
|
63 |
my_market_predictor = Pandas_Market_Predictor(df)
|
64 |
|
65 |
+
# Print data for each indicator before making predictions
|
66 |
+
for indicator in ["THR", "LGR", "THd", "THM"]:
|
67 |
+
indicator_data = my_market_predictor.get_indicator_data(indicator)
|
68 |
+
print(f"Data for {indicator}:")
|
69 |
+
print(indicator_data.head()) # Print the first few rows of data for the indicator
|
70 |
+
|
71 |
+
indicators = ["Doji", "Inside", "MA5", "MA20", "MACD", "tenkan_sen", "kijun_sen", "senkou_span_a", "senkou_span_b"]
|
72 |
trend = my_market_predictor.Trend_Detection(indicators, 10)
|
73 |
|
74 |
st.subheader("Predicted Trend:")
|