Update app.py
Browse files
app.py
CHANGED
@@ -1,81 +1,38 @@
|
|
1 |
import streamlit as st
|
2 |
-
import
|
3 |
-
from
|
4 |
-
from thronetrader.helper.squire import classify # Import your classification method
|
5 |
-
import pandas as pd
|
6 |
|
7 |
-
def
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
alpha_vantage_data = fetch_alpha_vantage_data(symbol)
|
15 |
-
|
16 |
-
# Extract relevant data from Alpha Vantage response
|
17 |
-
alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {})
|
18 |
-
df = pd.DataFrame(alpha_vantage_time_series).T
|
19 |
-
df.index = pd.to_datetime(df.index)
|
20 |
-
df = df.dropna(axis=0)
|
21 |
-
|
22 |
-
# Rename columns
|
23 |
-
df = df.rename(columns={'1. open': 'open', '2. high': 'high', '3. low': 'low', '4. close': 'Close', '5. volume': 'volume'})
|
24 |
-
|
25 |
-
# Calculate indicators
|
26 |
-
df = calculate_indicators(df)
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
st.subheader("Bollinger Bands Signals:")
|
32 |
-
bollinger_bands_signals = strategic_signals.get_bollinger_bands_signals()
|
33 |
-
display_signals(bollinger_bands_signals)
|
34 |
-
|
35 |
-
st.subheader("Breakout Signals:")
|
36 |
-
breakout_signals = strategic_signals.get_breakout_signals()
|
37 |
-
display_signals(breakout_signals)
|
38 |
-
|
39 |
-
st.subheader("Crossover Signals:")
|
40 |
-
crossover_signals = strategic_signals.get_crossover_signals()
|
41 |
-
display_signals(crossover_signals)
|
42 |
-
|
43 |
-
st.subheader("MACD Signals:")
|
44 |
-
macd_signals = strategic_signals.get_macd_signals()
|
45 |
-
display_signals(macd_signals)
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
50 |
|
51 |
-
#
|
52 |
-
|
53 |
-
st.subheader("Classification Result:")
|
54 |
-
st.write(classification_result)
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
response = requests.get(url)
|
60 |
-
alpha_vantage_data = response.json()
|
61 |
-
return alpha_vantage_data
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
data = data.apply(pd.to_numeric, errors='coerce')
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
data['Inside'] = (data['high'] < data['high'].shift(1)) & (data['low'] > data['low'].shift(1))
|
70 |
-
return data
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
if isinstance(signal, dict):
|
75 |
-
st.write(f"Date: {signal.get('date', 'N/A')}")
|
76 |
-
st.write(f"Signal: {signal.get('signal', 'N/A')}")
|
77 |
-
else:
|
78 |
-
st.write("Invalid signal format.")
|
79 |
|
80 |
if __name__ == "__main__":
|
81 |
main()
|
|
|
1 |
import streamlit as st
|
2 |
+
import yfinance as yf
|
3 |
+
from cuansignal import signals as cs
|
|
|
|
|
4 |
|
5 |
+
def fetch_yfinance_data(symbol, start, end):
|
6 |
+
try:
|
7 |
+
data = yf.download(symbol, start=start, end=end)
|
8 |
+
return data
|
9 |
+
except Exception as e:
|
10 |
+
st.error(f"Error fetching data: {e}")
|
11 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
def main():
|
14 |
+
st.title("Streamlit App with cuansignal and yfinance")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
# Input parameters
|
17 |
+
symbol = "AAPL"
|
18 |
+
start_date = "2024-02-04T14:20:30Z"
|
19 |
+
end_date = "2024-02-04T14:30:30Z"
|
20 |
|
21 |
+
# Fetch data
|
22 |
+
data = fetch_yfinance_data(symbol, start_date, end_date)
|
|
|
|
|
23 |
|
24 |
+
if data is not None:
|
25 |
+
st.subheader("Original Data:")
|
26 |
+
st.write(data.head())
|
|
|
|
|
|
|
27 |
|
28 |
+
# Calculate dEMA
|
29 |
+
result = cs.dEMA(data, base='Close', short=10, long=100)
|
|
|
30 |
|
31 |
+
st.subheader("dEMA Result:")
|
32 |
+
st.write(result.head())
|
|
|
|
|
33 |
|
34 |
+
else:
|
35 |
+
st.warning("Failed to fetch data. Check your input parameters.")
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
if __name__ == "__main__":
|
38 |
main()
|