Geek7 commited on
Commit
ef788c7
·
verified ·
1 Parent(s): 0740f1b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -82
app.py CHANGED
@@ -1,8 +1,6 @@
1
  import streamlit as st
2
  import requests
3
  import pandas as pd
4
- from thronetrader import StrategicSignals
5
- from Pandas_Market_Predictor import Pandas_Market_Predictor
6
 
7
  # Hard-coded API key for demonstration purposes
8
  API_KEY = "QR8F9B7T6R2SWTAT"
@@ -45,85 +43,5 @@ def main():
45
  st.subheader("Raw Data:")
46
  st.write(df)
47
 
48
- if __name__ == "__main__":
49
- main()
50
-
51
-
52
- # Hard-coded API key for demonstration purposes
53
- API_KEY = "QR8F9B7T6R2SWTAT"
54
-
55
- def fetch_alpha_vantage_data(api_key, symbol):
56
-
57
- url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={symbol}&interval=5min&apikey={api_key}'
58
- response = requests.get(url)
59
- alpha_vantage_data = response.json()
60
- return alpha_vantage_data
61
-
62
- def calculate_indicators(data):
63
- # Convert all columns to numeric
64
- data = data.apply(pd.to_numeric, errors='coerce')
65
-
66
- # Example: Simple condition for doji and inside
67
- data['Doji'] = abs(data['Close'] - data['Open']) <= 0.01 * (data['High'] - data['Low'])
68
- data['Inside'] = (data['High'] < data['High'].shift(1)) & (data['Low'] > data['Low'].shift(1))
69
- return data
70
-
71
- def display_signals(signal_type, signals):
72
- st.subheader(f"{signal_type} Signals:")
73
- st.write(signals)
74
-
75
- def main():
76
- st.title("Stock Trend Predictor")
77
-
78
- # Input for stock symbol
79
- symbol = st.text_input("Enter stock symbol (e.g., AAPL):", "AAPL")
80
-
81
- # Fetch Alpha Vantage data
82
- alpha_vantage_data = fetch_alpha_vantage_data(API_KEY, symbol)
83
-
84
- # Extract relevant data from Alpha Vantage response
85
- alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {})
86
- df = pd.DataFrame(alpha_vantage_time_series).T
87
- df.index = pd.to_datetime(df.index)
88
- df = df.dropna(axis=0)
89
-
90
- # Rename columns
91
- df = df.rename(columns={'1. open': 'Open', '2. high': 'High', '3. low': 'Low', '4. close': 'Close', '5. volume': 'Volume'})
92
-
93
- # Calculate indicators
94
- df = calculate_indicators(df)
95
-
96
- # Display stock trading signals
97
- strategic_signals = StrategicSignals(symbol=symbol)
98
-
99
- # Display loading message during processing
100
- with st.spinner("Predicting signals using Strategic Indicators..."):
101
- # Display signals
102
- st.subheader(":orange[Strategic Indicators Trend Prediction]")
103
- display_signals("Bollinger Bands", strategic_signals.get_bollinger_bands_signals())
104
- display_signals("Breakout", strategic_signals.get_breakout_signals())
105
- display_signals("Crossover", strategic_signals.get_crossover_signals())
106
- display_signals("MACD", strategic_signals.get_macd_signals())
107
- display_signals("RSI", strategic_signals.get_rsi_signals())
108
-
109
- # Create predictor
110
- my_market_predictor = Pandas_Market_Predictor(df)
111
-
112
- # Predict Trend
113
- indicators = ["Doji", "Inside"]
114
-
115
- # Display loading message during prediction
116
- with st.spinner("Predicting trend using AI ...."):
117
- # Predict trend
118
- trend = my_market_predictor.Trend_Detection(indicators, 10)
119
-
120
- # Display results
121
- st.subheader(":orange[AI Trend Prediction]")
122
- st.write("Buy Trend :", trend['BUY'])
123
- st.write("Sell Trend :", trend['SELL'])
124
-
125
- # Delete the DataFrame to release memory
126
- del df
127
-
128
  if __name__ == "__main__":
129
  main()
 
1
  import streamlit as st
2
  import requests
3
  import pandas as pd
 
 
4
 
5
  # Hard-coded API key for demonstration purposes
6
  API_KEY = "QR8F9B7T6R2SWTAT"
 
43
  st.subheader("Raw Data:")
44
  st.write(df)
45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
  if __name__ == "__main__":
47
  main()