import streamlit as st import requests from thronetrader import StrategicSignals from thronetrader.helper.squire import classify # Import your classification method import pandas as pd def main(): st.title("Strategic Trading Signals") # Input for stock symbol symbol = st.text_input("Enter stock symbol (e.g., AAPL):", "AAPL") # Fetch Alpha Vantage data alpha_vantage_data = fetch_alpha_vantage_data(symbol) # Extract relevant data from Alpha Vantage response alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {}) df = pd.DataFrame(alpha_vantage_time_series).T df.index = pd.to_datetime(df.index) df = df.dropna(axis=0) # Rename columns df = df.rename(columns={'1. open': 'open', '2. high': 'high', '3. low': 'low', '4. close': 'Close', '5. volume': 'volume'}) # Calculate indicators df = calculate_indicators(df) # Display strategic trading signals strategic_signals = StrategicSignals(df) st.subheader("Bollinger Bands Signals:") bollinger_bands_signals = strategic_signals.get_bollinger_bands_signals() display_signals(bollinger_bands_signals) st.subheader("Breakout Signals:") breakout_signals = strategic_signals.get_breakout_signals() display_signals(breakout_signals) st.subheader("Crossover Signals:") crossover_signals = strategic_signals.get_crossover_signals() display_signals(crossover_signals) st.subheader("MACD Signals:") macd_signals = strategic_signals.get_macd_signals() display_signals(macd_signals) st.subheader("RSI Signals:") rsi_signals = strategic_signals.get_rsi_signals() display_signals(rsi_signals) # Example of using your classify method classification_result = classify(df, logger) # Pass your DataFrame and logger st.subheader("Classification Result:") st.write(classification_result) def fetch_alpha_vantage_data(symbol): api_key = "QR8F9B7T6R2SWTAT" url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={symbol}&interval=5min&apikey={api_key}' response = requests.get(url) alpha_vantage_data = response.json() return alpha_vantage_data def calculate_indicators(data): # Convert all columns to numeric data = data.apply(pd.to_numeric, errors='coerce') # Example: Simple condition for doji and inside data['Doji'] = abs(data['Close'] - data['open']) <= 0.01 * (data['high'] - data['low']) data['Inside'] = (data['high'] < data['high'].shift(1)) & (data['low'] > data['low'].shift(1)) return data def display_signals(signals): for signal in signals: if isinstance(signal, dict): st.write(f"Date: {signal.get('date', 'N/A')}") st.write(f"Signal: {signal.get('signal', 'N/A')}") else: st.write("Invalid signal format.") if __name__ == "__main__": main()