import streamlit as st from thronetrader import StrategicSignals import requests import pandas as pd # Hard-coded API key for demonstration purposes API_KEY = "QR8F9B7T6R2SWTAT" def fetch_alpha_vantage_data(api_key, symbol): url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={symbol}&interval=5min&apikey={api_key}' response = requests.get(url) alpha_vantage_data = response.json() return alpha_vantage_data def main(): st.title("Stock Trend Predictor") # User input for stock symbol symbol = st.text_input("Enter Stock Symbol (e.g., IBM):") if not symbol: st.warning("Please enter a valid stock symbol.") st.stop() # Use the hard-coded API key api_key = API_KEY # Fetch Alpha Vantage data alpha_vantage_data = fetch_alpha_vantage_data(api_key, symbol) # Extract relevant data from Alpha Vantage response alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {}) df = pd.DataFrame(alpha_vantage_time_series).T df.index = pd.to_datetime(df.index) df = df.dropna(axis=0) # Display the raw data st.subheader("Raw Data:") st.write(df) if __name__ == "__main__": main() def main(): st.title("Strategic Trading Signals") # Input for stock symbol symbol = st.text_input("Enter stock symbol (e.g., AAPL):", "AAPL") # Display strategic trading signals strategic_signals = StrategicSignals(symbol=symbol) st.subheader("Bollinger Bands Signals:") bollinger_bands_signals = strategic_signals.get_bollinger_bands_signals() st.write(bollinger_bands_signals) st.subheader("Breakout Signals:") breakout_signals = strategic_signals.get_breakout_signals() st.write(breakout_signals) st.subheader("Crossover Signals:") crossover_signals = strategic_signals.get_crossover_signals() st.write(crossover_signals) st.subheader("MACD Signals:") macd_signals = strategic_signals.get_macd_signals() st.write(macd_signals) st.subheader("RSI Signals:") rsi_signals = strategic_signals.get_rsi_signals() st.write(rsi_signals) if __name__ == "__main__": main() def fetch_alpha_vantage_data(api_key, symbol): url = f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY&symbol={symbol}&interval=5min&apikey={api_key}' response = requests.get(url) alpha_vantage_data = response.json() return alpha_vantage_data def calculate_indicators(data): # Convert all columns to numeric data = data.apply(pd.to_numeric, errors='coerce') # Example: Simple condition for doji and inside data['Doji'] = abs(data['close'] - data['open']) <= 0.01 * (data['high'] - data['low']) data['Inside'] = (data['high'] < data['high'].shift(1)) & (data['low'] > data['low'].shift(1)) return data def main(): st.title("AI Stock Trend Predictor") # User input for stock symbol symbol = st.text_input2("Enter Stock Symbol (e.g., IBM):") if not symbol: st.warning("Please enter a valid stock symbol.") st.stop() # Use the hard-coded API key api_key = API_KEY # Fetch Alpha Vantage data alpha_vantage_data = fetch_alpha_vantage_data(api_key, symbol) # Extract relevant data from Alpha Vantage response alpha_vantage_time_series = alpha_vantage_data.get('Time Series (5min)', {}) df = pd.DataFrame(alpha_vantage_time_series).T df.index = pd.to_datetime(df.index) df = df.dropna(axis=0) # Rename columns df = df.rename(columns={'1. open': 'open', '2. high': 'high', '3. low': 'low', '4. close': 'close', '5. volume': 'volume'}) # Calculate indicators df = calculate_indicators(df) # Create predictor my_market_predictor = Pandas_Market_Predictor(df) # Predict Trend indicators = ["Doji", "Inside"] trend = my_market_predictor.Trend_Detection(indicators, 10) # Display results st.subheader("Predicted Trend:") st.write("Buy Trend :", trend['BUY']) st.write("Sell Trend :", trend['SELL']) # Delete the DataFrame to release memory del df if __name__ == "__main__": main()